
CAMERA
GUIDE

THE OFFICIAL RASPBERRY PI

FOR CAMERA MODULE & HIGH QUALITY CAMERA

2 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

3

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

4 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

First published in 2020 by Raspberry Pi Trading Ltd, Maurice Wilkes Building,
St. John's Innovation Park, Cowley Road, Cambridge, CB4 0DS

Publishing Director: Russell Barnes • Editor: Phil King
Contributors: Dan Aldred, Wesley Archer, Jody Carter, PJ Evans,

Richard Hayler & family, James Singleton, Rob Zwetsloot,
the Raspberry Pi Foundation Education Team

Design: Critical Media
CEO: Eben Upton

ISBN: 978-1-912047-52-9

The publisher and contributors accept no responsibility in respect of any omissions
or errors relating to goods, products or services referred to or advertised in this book.
Except where otherwise noted, the content of this book is licensed under a Creative

Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
(CC BY-NC-SA 3.0)

5

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Welcome to
The Official Raspberry
Pi Camera Guide

O ne of the most popular add-ons for the Raspberry Pi, the official Camera Module –
or the new High Quality Camera – turns your favourite single-board computer into
a powerful digital camera. Launched back in 2013, the original Camera Module was

succeeded by the higher-spec v2 in April 2016. The High Quality Camera was launched in April
2020, offers Ultra HD image resolution, and enables you to attach any C- or CS-mount lens.

In this book we’ll show you how to get started with your Raspberry Pi camera, taking photos
and videos from the command line and writing Python programs to automate the process.
We’ll reveal how to create time-lapse and slow-motion videos, before moving on to exciting
projects including a Minecraft photo booth, wildlife camera trap, and smart door with video.
There are just so many things you can do with a Raspberry Pi camera!

Phil King, Editor

6 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Chapter 1: Getting started 008
Set up and connect your camera and start taking shots

Chapter 2: Precise camera control 016
Use command-line switches to access camera options and effects

Chapter 3: Time-lapse photography 020
Take photos at regular intervals, then turn the images into a video

Chapter 4: High-speed photography 024
Film dazzling slow-motion clips of exciting events

Chapter 5: Control the camera from Python 028
Use the picamera library to access the camera in Python programs

Chapter 6: Stop-motion and selfies 034
Wire up a physical push-button to take photos

Chapter 7: Flash photography using an LED 040
Add an LED flash to shoot images in low light

Chapter 8: Make a Minecraft photo booth 046
Build a booth in Minecraft that takes photos of the real world

Contents

7

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Chapter 9: Make a spy camera 050
Set up a motion-activated spy camera in your room

Chapter 10: Smart door 054
See who’s at the door and know when the post has arrived

Chapter 11: Car Spy Pi 062
Use ANPR to identify who’s parked on your driveway

Chapter 12: Build a wildlife camera trap 070
Detect and photograph animals in your back garden

Chapter 13: Take your camera underwater 076
Explore the underwater world with your Raspberry Pi and camera

Chapter 14: Install a bird box camera 086
Observe nesting birds without disturbing them

Chapter 15: Live-stream video and stills 092
Stream video and regular stills to a remote computer

Chapter 16: Set up a security camera 102
Protect your home from intruders using motionEyeOS

Chapter 17: Quick reference 108
A guide to the camera hardware, commands, and picamera Python library

8 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

I n this chapter, we show you how to connect the High Quality Camera or Camera Module
to your Raspberry Pi using the supplied ribbon cable. We will then enable it in Raspbian,
before entering some commands in a Terminal window to start shooting photos and

video. Let’s get started…

01. High Quality Camera
The High Quality Camera (HQ Camera for short) can capture higher-resolution images than
the standard Camera Module. Unlike the latter, it doesn’t have a lens already attached.
Instead, it can be used with any standard C- or CS-mount lens; 6 mm and 16 mm lenses are
available to purchase with the camera to help you get started.

6 mm CS-mount lens
A low-cost 6 mm lens is available for the
HQ Camera. This lens is suitable for basic
photography. It can also be used for macro
photography because it can focus objects at
very short distances.

Getting started
Find out how to connect your High Quality Camera or
Camera Module, enable it, and take your first shots

Chapter 1

9Chapter 1 Getting started

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

01 Fitting the lens
The 6 mm lens is a CS-mount device,

so does not need the C-CS adapter ring (see
diagram above). It won’t focus properly if the
adapter is fitted – so, if necessary, remove it.
Then rotate the lens clockwise all the way into
the back focus adjustment ring.

02 Back focus adjustment
ring and lock screw

The back focus adjustment ring should be
screwed in fully for the shortest possible back-
focal length. Use the back focus lock screw to
make sure it does not move out of this position
when adjusting the aperture or focus.

The dust cap should be used when a lens is not

attached, as the camera sensor is sensitive to dust

This enables you to mount the camera on a

standard tripod: take care not to damage the

ribbon when screwing the tripod into the camera

Supplied with the camera, the C-CS adapter

should be used when attaching a C-mount lens

The camera is supplied with a 20 cm ribbon cable

to connect it to Raspberry Pi’s Camera port, but

longer cables are available if needed

This ring can be used to adjust the focus when

using a fixed-focus lens, or to alter the focal range

of an attached adjustable-focus lens

Use this screw to lock the back focus adjustment

ring in position

10 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

03 Aperture
To adjust the aperture, hold the

camera with the lens facing away from you.
Turn the middle ring while holding the outer
ring, furthest from the camera, steady. Turn
clockwise to close the aperture and reduce
image brightness. Turn anti-clockwise to open
the aperture. Once you are happy with the light
level, tighten the screw on the side of the lens
to lock the aperture.

04 Focus
First, lock the inner focus ring, labelled

‘NEAR FAR’, in position by tightening its
screw. Now hold the camera with the lens
facing away from you. Hold the outer two
rings of the lens and turn them both clockwise
until the image comes into focus – it’ll take
four or five whole turns. To adjust focus, turn
the outer two rings clockwise to focus on a
nearby object. Turn them anti-clockwise to
focus on a distant object. You may find you
need to adjust the aperture again after this.

16 mm C-mount lens
The 16 mm lens provides a higher-quality
image than the 6 mm lens. It has a narrow
angle of view which is more suited to
viewing distant objects.

01 Fitting the
C-CS adapter

Ensure the C-CS adapter that comes with the
HQ Camera is fitted to the 16 mm lens. The
lens is a C-mount device, so it has a longer
back focus than the 6 mm lens and therefore
requires the adapter.

11Chapter 1 Getting started

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

02 Fitting the lens
to the camera

Rotate the 16 mm lens and C-CS adapter
clockwise all the way into the back focus
adjustment ring.

03 Back focus adjustment
ring and lock screw

The back focus adjustment ring should be
screwed in fully. Use the back focus lock screw to
make sure it does not move out of this position
when adjusting the aperture or focus.

04 Aperture
To adjust the aperture, hold the camera

with the lens facing away from you. Turn the
inner ring, closest to the camera, while holding
the camera steady. Turn clockwise to close the
aperture and reduce image brightness. Turn anti-
clockwise to open the aperture. When happy with
the light level, tighten the screw on the side of
the lens to lock the aperture into position.

05 Focus
To adjust focus, hold the camera with the

lens facing away from you. Turn the focus ring,
labelled ‘NEAR FAR’, anti-clockwise to focus
on a nearby object. Turn it clockwise to focus on
a distant object. You may find you need to adjust
the aperture again after this.

12 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

02. Connecting and
using the camera

With your HQ Camera with lens – or your Camera Module – ready, it’s time to connect it to
Raspberry Pi and start to capture some images.

01 Connect ribbon cable to camera
On the HQ Camera or Camera Module board, you’ll

find a flat plastic connector. Carefully pull the sticking-out
edges until the connector pulls part-way out. Slide the ribbon
cable, with the silver edges downwards and the blue plastic
facing upwards, under the flap you just pulled out, then push
the flap gently back into place with a click (Figure 1); it doesn’t
matter which end of the cable you use. If the cable is installed
properly, it will be straight and won’t come out if you give it a
gentle tug; if not, pull the flap out and try again. Figure 1

 Figure 2

13Chapter 1 Getting started

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

02 Connect cable to Raspberry Pi
Find the Camera port on Raspberry Pi and pull the plastic flap gently upwards. With

Raspberry Pi positioned so the HDMI port is facing you, slide the ribbon cable in so the silver
edges are to your left and the blue plastic to your right (Figure 2), then gently push the flap
back into place. If the cable is installed properly, it’ll be straight and won’t come out if you
give it a gentle tug; if not, pull the flap out and try again.

If using a Raspberry Pi Zero, its Camera port is found on the edge of the board. However,
as it’s a smaller size than the regular one on other Raspberry Pi models, you’ll need a camera
adapter cable to use it.

03 Enable the camera
Connect the power supply back to Raspberry Pi and let it load Raspbian. Before you

can use the camera, you’ll need to tell Raspberry Pi it has one connected: in the Raspbian
menu, select Preferences, then Raspberry Pi Configuration. When the tool has loaded, click
the Interfaces tab, find the Camera entry in the list, and click on the round radio button to the
left of ‘Enabled’ to switch it on (Figure 3). Click OK, and the tool will prompt you to reboot
your Raspberry Pi. Do so and your camera will be ready to use.

04 Test the camera
To confirm that your camera is correctly installed, you can use the raspistill tool.

This, along with raspivid for videos, is designed to capture images from the camera using
Raspberry Pi’s command-line interface (CLI). In the Raspbian menu, select Accessories, then

 Figure 3

14 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Terminal. A black window with green and blue writing in it will appear (Figure 4): this is the
Terminal, which allows you to access the command-line interface.

To take a test shot, type the following into the Terminal:

raspistill -o test.jpg

As soon as you hit the ENTER key, you’ll see a large picture of what the camera sees
appear on-screen (Figure 5). This is called the live preview and, unless you tell raspistill
otherwise, it will last for five seconds. After those five seconds are up, the camera will
capture a single still picture and save it in your home folder under the name test.jpg. If you
want to capture another, type the same command again – but make sure to change the
output file name, after the -o, or you’ll save over the top of your first picture.

05 More advanced commands
The raspistill command has a list of options so long that it borders on the

intimidating. Don’t worry – you won’t need to learn them all, but there are a few that might be
useful to you, such as:

raspistill -t 15000 -o newpic.jpg

The -t option changes the delay before the picture is taken, from the default five seconds
to whatever time you give it in milliseconds – in this case, you have a full 15 seconds to get

 Figure 4

15Chapter 1 Getting started

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

your shot arranged perfectly after you press ENTER. You can explore more camera options
in the next chapter, or by referring to Chapter 17.

06 Rotate the image
If the live preview was upside-down, you’ll need to tell raspistill the camera is

rotated. The Camera Module is designed to have the ribbon cable coming out of the bottom
edge; if it’s coming out of the sides or the top, as with some third-party camera mount
accessories, you can rotate the image by 90, 180, or 270 degrees using the -rot switch. For
a camera mounted with the cable coming out of the top, use the following command:

raspistill -rot 180 -o test.jpg

 Figure 5

 SHOOTING VIDEO
For shooting video, raspivid is what you need. Try it out with this Terminal command:

raspivid -t 10000 -o testvideo.h264

This records a ten-second video (10,000 milliseconds) at the 1920 × 1080 resolution. You can also

shoot slow-mo video at 640 × 480 by using:

raspivid -w 640 -h 480 -fps 90 -t 10000 -o test90fps.h264

You can use VLC to play the videos back – see Chapter 4 for more details.

16 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

S o, you’ve connected the HQ Camera or Camera Module to your Raspberry Pi and
learned how to take still photos and shoot videos from the command line. Now
let’s explore the raspistill and raspivid commands further, including the many

switches and options available. We’ll also take a look at the raspiyuv command, which sends
its unencoded YUV or RGB output directly from the camera component to a file.

01 Preview mode
When taking stills or shooting video, one of the first things you might want to alter

is the preview window that appears by default on the screen. First of all, if it’s upside-down,
just add -rot 180 to your raspistill or raspivid command to rotate it. Also, adding -hf
and/or -vf will flip the image horizontally and/or vertically.

Using the -p switch, you can set the window’s on-screen position, along with its height and
width. The -p switch takes four parameters: x co-ordinate, y co-ordinate, width, and height. So,
for example:

raspistill -o image.jpg -p 20,100,1280,720

…would place the preview window’s top-left corner at co-ordinate (20,100), with a width of
1280 pixels and height of 720 pixels.

Note that if you only want to see a preview without taking a shot, you can simply omit the
-o image.jpg part. The -t switch sets the duration of the preview: you can set it to 0 to make
it stay on screen until you press CTRL+C.

If you want a full-screen preview, this is easily achieved using the -f switch. The -op switch
can be used to adjust the preview’s opacity, from 0 (invisible) to 255 (solid). If you want to
disable the preview window completely, use the -n switch.

Precise
camera control
Use command-line switches to access a variety
of camera options and effects

Chapter 2

17Chapter 2 Precise camera control

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

02 Camera control options
Like most dedicated digital cameras, the Raspberry Pi HQ Camera or Camera Module

offers a range of options to adjust aspects such as brightness (-br, from 1 to 100), contrast
(-co, -100 to 100), sharpness (-sh, -100 to 100), saturation (-sa, -100 to 100), ISO (-ISO, 100 to
800), and EV compensation (-ev, -10 to 10).

In addition, there are numerous options for exposure mode for shooting in certain scenarios,
akin to the ‘scenes’ found on most digital cameras. Just use the -ex switch followed by one
of the following terms: auto, night, nightpreview, backlight, spotlight, sports, snow,
beach, verylong (long exposure), fixedfps (for video only), antishake, or fireworks.

Automatic white balance can be adjusted by following the -awb switch with one of: off, auto,
sun, cloud, shade, tungsten, fluorescent, incandescent, flash, or horizon.

You can set the shutter speed in microseconds with the -ss switch; the upper limit depends
on the exposure mode and other settings. The metering mode – used for preview and capture
– can be set with -mm to one of the following: average, spot, backlit, or matrix.

There’s also the option of restricting the region of interest to only part of the sensor, using
-roi with parameters for x and y co-ordinates (from top left), width, and height. For example,
to set a ROI halfway across and down the sensor, with quarter-size width and height, you’d use:
-roi 0.5,0.5,0.25,0.25.

03 Keypress mode
If you’d like to take a still photo at an exact time, rather than having to wait for the

-t switch delay time to elapse, keypress mode is your friend. Just add the -k switch to your
raspistill command, then press the ENTER key to take the shot: it acts like a shutter button.
To exit the procedure, press X followed by ENTER.

 The preview can be resized and positioned manually, and can also have its opacity adjusted

18 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

By adding %04d to the end of your file name in the command, you can save every shot you
have taken before aborting:

raspistill -o keypress%04d.jpg -k

Each shot will have a four-digit sequential number added to its file name, so you’ll get
keypress0000.jpg, keypress0001.jpg, keypress0002.jpg, etc. This is a useful technique for
time-lapses using the -tl switch, too: see Chapter 3 for more details.

04 Image effects
A whole bunch of effects can be added to the camera in real-time, shown in the

preview window. This is achieved by using the -ifx switch followed by one of the following
terms: none, negative, solarise, posterise, sketch, denoise, emboss, oilpaint, hatch,
gpen (graphite sketch effect), pastel, watercolour, film, blur, saturation (adjust colour
saturation of the image), colorswap, washedout, colorpoint, colorbalance, or cartoon.

If you’d like to take monochrome images, you can use the -cfx (colour effect) switch to
achieve this, using the following setting: -cfx 128:128.

To increase contrast between dark and light areas using DRC (dynamic range compression),
use the -drc switch to turn it on/off (it’s off by default).

 A multitude of real-time effects may be added to images, including emboss, as shown here

19Chapter 2 Precise camera control

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

05 Still options
Let’s take a look at some options that are specific to the raspistill command. As

already mentioned, we use -o followed by a file name to output to a file, and the -t switch sets
the shutter delay in milliseconds. For example, to save a photo taken after two seconds, use:

raspistill -t 2000 -o image.jpg

You can set the width and height of the image with -w and -h, each followed by a value – up to
4056 and 3040 (HQ Camera), 3280 and 2464 (Camera Module v2), or 2592 and 1944 (CM v1).

You can also set the quality of the JPEG image, using -q, from 0 to 100 – the latter is almost
completely uncompressed. Alternatively, to save it as a lossless PNG (slower than using JPG),
use -e (encoding) followed by png:

raspistill -o image.png –e png

For a full list of options, see Chapter 17. The raspiyuv command works in a similar fashion
and offers most of the same options, apart from adding EXIF tags, but sends its YUV or RGB
output directly from the camera component to file. To use RGB, add the -rgb switch.

06 Shooting video
The raspivid command is used to shoot video. In this case, the -t switch sets the

duration in milliseconds. The bitrate is set using -b, in bits per second (so, 25Mpbs is -b
25000000), while -fps sets the frame rate – see Chapter 17 for the maximum bitrate and
frame rate for your camera model. For example, to shoot five seconds of video at 1080p
(1920 × 1080), with a bitrate of 15Mbps and frame rate of 30fps, use:

raspivid -t 5000 -b 15000000 -fps 30 -o video.h264

See Chapter 4 for information
on how to shoot slow-
motion footage. Many
other video options are
available, including time
delays, keypress mode, and
segmenting a stream into
multiple files. For full details,
see Chapter 17.

 The posterise effect is
shown here; use -ifx
posterise in your command

20 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

T ime-lapse photography reveals exciting things about the world which you wouldn’t
otherwise be able see. These are things that happen too slowly for us to perceive:
bread rising and plants growing; the clouds, sun, moon, and stars crossing the sky;

shadows moving across the land. In this chapter, we’ll be making a Raspbian-based device
that lets you watch things that are too slow to observe with the naked eye. To do this, we will
capture lots of still photographs and combine these frames into a video with FFmpeg/libav,
which can then be accessed via a web browser.

Time-lapse
photography
Make a device to capture photographs at regular
intervals, then turn these images into a video

Chapter 3

 Time-lapse photography is ideal for capturing lengthy natural processes

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

21Chapter 3 Time-lapse photography

01 Connect the camera
First, with Raspberry Pi turned off, connect the HQ Camera or Camera Module to it

with the included ribbon cable. As mentioned in Chapter 1, you need to locate the correct
camera socket on your Raspberry Pi, labelled ‘CAMERA’ (or ‘CSI’ on some models). Carefully
lift up its plastic slider and pull it away from Raspberry Pi gently but firmly; it will move up a
short distance, opening up the connector. Insert the ribbon cable into the socket, with the blue
side – or white tab on a Raspberry Pi Zero camera cable – facing the plastic slider (and the
metal contacts facing the other way). Finally, hold the ribbon cable in position and push the
slider back down to clamp the cable firmly in place.

02 Enable and test the camera
Power up your Raspberry Pi and enable the camera in the Interfaces tab of the

Raspberry Pi Configuration tool (found under Preferences), then reboot your Raspberry Pi.
Open a Terminal window or establish a secure shell (SSH) connection (to access it from a

remote computer). You can test the camera by running the following:

raspistill -o testimage.jpg

After five seconds (if using an original Camera Module v1, its red LED should light up during
this time), a JPEG image will be saved to the current directory. If the camera is mounted
upside-down, you can use the rotate command-line switch (-rot 180) to account for this.

03 Install and configure software
Install a web server so you can access your captured images remotely. Run this

command to install Apache:

sudo apt-get install apache2

Remove the default page to see the contents of the directory:

sudo rm /var/www/html/index.html

Visit the IP address of your Raspberry Pi (e.g. http://192.168.1.45 – you can find this by using
hostname -I) on another computer and you should see an empty directory listing. If you run
the following command and refresh the page, you should see an image file listed. You run this
as a superuser (by using sudo) so you can write to the directory.

sudo raspistill -o /var/www/html/testimage.jpg

Click on the file link on the remote computer and you’ll see the image in your browser.

22 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

04 Capture the images
Set up your scene and check the positioning of the camera.

sudo raspistill -w 1920 -h 1080 -o
/var/www/html/testimageFullHD.jpg

The width and height have been changed to capture a smaller image in 16:9 aspect ratio. This
makes things easier later. The top and bottom are cropped, so make sure that your subject is
in frame. Run this to start the capture:

sudo raspistill -w 1920 -h 1080 -t 10800000 -tl 10000 -o
/var/www/html/frame%04d.jpg &

This takes a photo every ten seconds for
three hours. The ‘&’ at the end runs the
process in the background.

05 Prepare to
make the video

You can render the video on Raspberry
Pi, but – depending on the model – this
can take a long time. So you may prefer to

 MAKE AN ANIMATED GIF
Instead of video, make an animated GIF with

ImageMagick. Use smaller images, captured

less frequently.

sudo convert /var/www/frame*.jpg/

var/www/anim.gif &

 Some bread dough ready to prove. Watch it rise in your video. Be careful
not to move the bowl or camera during filming

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

23Chapter 3 Time-lapse photography

transfer the files to a more powerful computer
instead. Whichever method you decide to
use, you will need to install the tools on the
rendering machine; for Raspberry Pi, enter:

sudo apt-get install ffmpeg

This installs the FFmpeg tool which we'll use to convert our images into a video.
To copy the images to a remote machine, you can download them from the web server using

wget or curl. For example:

wget -r -A jpg http://192.168.1.45

Or if you don’t have wget…

curl http://192.168.1.45/frame [0001-0766].jpg -O

Change the IP address and numbers accordingly.

06 Make the video
The final step is to assemble the video. Run the following command to start the

rendering process:

sudo ffmpeg -i /var/www/html/frame%04d.jpg -crf 4 -b:v 10M
/var/www/html/video.webm

When the rendering process has finished, you’ll be able to view the video in your browser.
The default frame rate is 25fps. This compresses three hours of images taken at ten-second
intervals to about 40 seconds of video. You can adjust this with the -framerate command-
line option. The bitrate (-b) has been set high, and the Constant Rate Factor (-crf) has been
kept low, to produce a good-quality video.

 Running the
rendering process
on a Raspberry
Pi. This will take
some time, so you
may prefer to use
a faster machine

 OTHER VIDEO FORMATS
WebM is an open video format that can

be displayed directly in most browsers.

However, other video formats are available.

24 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

A t first glance it seems counter-intuitive, but in order to create a smooth slow-
motion movie, you need a high-speed camera. Essentially, a movie is just a
collection of still photos, or frames, all played one after the other at a speed that

matches the original action. A slow-motion clip is produced by recording more frames than
are normally needed and then playing them back at a reduced speed. Normal film is typically
recorded at 24 frames per second (fps), with video frame rates varying between 25 and 29fps
depending on which format/region is involved. So if you record at 50fps and play back at
25fps, the action will appear to be taking place at half the original speed. It’s actually a little
more complicated than that with the use of interlaced frames, but you don’t really need to
consider them here.

Clips can now be recorded at a high frame rate
The original software for the Camera Module was limited in terms of the frame rates it could
cope with, but a subsequent update added new functionality so that clips can now be recorded
at up to 90fps (or 120fps on the HQ Camera). There is one slight limitation: high frame rates
are achieved by combining pixels from the camera sensor, so you have to sacrifice resolution.
So, depending on your exact hardware setup, a high-speed mode of 90fps may most
consistently be achieved at a lower resolution such as 640×480. This is still good enough to
capture decent-quality images, though.

A quick way of getting started is to pick some everyday objects and record them in
motion. How about a dropped egg hitting a table top? A pull-back toy car crashing through
some Lego blocks? Or even the old favourite of a water balloon bursting? It’s best to do the
last one outside!

High-speed
photography
All you need to make dazzling slow-motion clips of exciting
events is a Raspberry Pi and HQ Camera or Camera Module

Chapter 4

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

25Chapter 4 High-speed photography

Pick some everyday objects and record them in motion
Once you’ve chosen your subject, you’ll need a way of holding and angling the camera, and
some way of lighting the scene. Neither needs to be sophisticated: a normal desk lamp works
fine for extra illumination indoors, while a ‘helping-hand’ work aid (or tripod) is brilliant for
keeping the camera stable at tricky angles. You might also want to invest in a longer cable for
the camera. You can get a 30 cm ribbon cable for less than £2 or if you want to go even longer,
a set of special adapters allows you to extend using a standard HDMI cable.

Avoid unwanted reflections, and
fine-tune your video specifications
Note that if using a Camera Module v1, its red LED will illuminate when recording is taking
place, which can cause undesirable reflections. You can just block the LED off with a blob of
modelling clay, or turn it off completely by adding the line disable_camera_led=1 to your
/boot/config.txt file. This isn’t needed for a Camera Module v2 or HQ Camera.

The command for capturing video with the Raspberry Pi camera is raspivid, best run from
a Terminal window. There are a number of command options that you need to specify:

• -fps sets the frame rate.
• -w and -h specify the width and height of the frames. For the fastest frame rates, set this to

640 and 480 respectively.
• -t allows you to set how long to record for. If you’re working by yourself, the easiest way to

avoid missing any of the action is to begin filming for a predefined period, giving yourself
plenty of time to start things off manually.

• -o specifies the file name to use for the saved movie.
• -n disables preview mode.
So, putting all of that together, the following commands would capture a five-second clip at
90fps and save the resulting movie in the file test.h264:

raspivid -n -w 640 -h 480 -fps 90 -t 5000 -o test.h264

Right: now that you’ve recorded your movie clip, how can you play it back? One easy way is to
use the free VLC player, which is now installed by default in the full Raspbian ‘with desktop and
recommended software’ image. If it’s not, you can install it with:

sudo apt-get install vlc

The version on Raspberry Pi has some handy features which can be accessed by checking the
‘Advanced Controls’ option under the View menu. These include the extremely useful ‘Frame
by Frame’ button. You can also alter the playback speed to slow things down even further.

26 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

To extend the project, how about connecting a break-beam IR sensor pair via the GPIO
pins and using these to trigger the camera recording? The Python picamera library (see
Chapter 5) provides full access to the camera’s functions and could be used with your code.

Capturing the clip

01 Lights
Get your scene lined up and lit, then test how it looks by using the camera preview

mode for five seconds:

raspistill -w 640 -h 480 -t 5000

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

27Chapter 4 High-speed photography

02 Camera
Type the command, ready for execution (but don’t press ENTER yet):

raspivid -w 640 -h 480 -fps 90 -t 7000 -o myvid1.h264

Once triggered, this will capture a seven-second clip.

03 Action
When everything is ready, hit ENTER and then release the car / drop the egg / burst

the balloon. You’ll have footage before and after the event, which can be trimmed with some
post-production editing.

28 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

S o far, we’ve looked at using the camera from the command line, but what if you want
to control it from a Python program? The picamera library enables you to access all
the camera’s features in Python. (Note: at the time of writing, the HQ Camera isn’t yet

fully supported by picamera and may freeze when attempting to take multiple shots.) Let’s
take a look at how to use it to shoot stills and videos, alter settings, and add effects.

01 Getting started
The picamera library comes pre-installed in the most recent versions of Raspbian. If

it’s not present already, you can install it manually. In a Terminal window, enter:

sudo apt-get update
sudo apt-get install python-picamera python3-picamera

Control the camera
from Python
Use the picamera library to access the camera in Python programs

Chapter 5

 The camera preview can be resized and positioned to your liking

29Chapter 5 Control the camera from Python

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

With your camera already connected and enabled in Raspberry Pi Configuration, open
Programming > Thonny from the Raspbian desktop menu. Create a new file by clicking
File > New file. Save it with File > Save, naming it ch5listing1.py. Note: Never name a file
picamera.py, as this is the file name for the picamera library itself!

Now enter the code from ch5listing1.py. Save it with CTRL+S and run with F5. The full-
screen camera preview should be shown for ten seconds, and then close. Note: To be able
to see the preview when using VNC for remote access from another computer, open the VNC
Server menu and go to Options > Troubleshooting, then select ‘Enable direct capture mode’.

If the preview appears upside-down, add the line camera.rotation = 180 just above
camera.start_preview(). Other possible rotation values are 90 and 270.

You can alter the transparency level of the preview by entering an alpha value – from 0 to
255 – within the latter command’s brackets; e.g. camera.start_preview(alpha=200).

It’s also possible to change the position and size of the preview. For example, to place its
top corner 50 pixels right and 150 down, and resize it to 1024 × 576:

camera.start_preview(fullscreen=False, window = (50,150,1024,576))

02 Take a photo
Now let’s take a still photo. We can do this by adding the line:

 camera.capture('/home/pi/Desktop/image.jpg')

…just after the sleep in our code, so it looks like ch5listing2.py. Run the code and after a
preview of five seconds (as set by sleep), it’ll capture a photo as image.jpg. You may the
preview adjust to a different resolution momentarily as the picture is taken. In this example,
the resulting image file will appear on the desktop; double-click its icon to open it.

You can alter the file name and directory path in the code, along with the sleep time.
Remember, though, that it should be at least five seconds, to give the camera sensor enough
time to adjust its light levels.

03 Make a loop
The great thing about using Python with the picamera library is that it makes it easy

to use a loop to take a sequence of photos. In Thonny, create a new file and enter the code
from ch5listing3.py.

After initiating the camera preview, we add a for loop with a range of 5, so it will run five times
to take five photos. The sleep command sets the time between shots, captured using the line:

camera.capture('/home/pi/Desktop/image%s.jpg' % i)

Here, the %s token is replaced by whatever we add after the % following the file name – in this
case, the variable i set by our for loop. Note that i will range from 0 to 4, so the images will

30 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

be saved as image0.jpg, image1.jpg, and so on. Once they’re all taken, the preview will close.
In this example, you’ll see the five files on your desktop; double-click to open them.

You can also use a for loop to alter camera setting levels such as brightness over time. For
more details, see Step 04.

04 Control camera settings
Brightness is just one of numerous settings available for the camera. Here’s a list of

the main options, along with their default values (and ranges where applicable):

camera.brightness = 50 (0 to 100)
camera.sharpness = 0 (-100 to 100)
camera.contrast = 0 (-100 to 100)
camera.saturation = 0 (-100 to 100)
camera.iso = 0 (automatic) (100 to 800)
camera.exposure_compensation = 0 (-25 to 25)
camera.exposure_mode = 'auto'
camera.meter_mode = 'average'
camera.awb_mode = 'auto'
camera.rotation = 0
camera.hflip = False
camera.vflip = False
camera.crop = (0.0, 0.0, 1.0, 1.0)

The resolution of the capture is also configurable. For example:

 Using the ch5listing5.py code, you can view a loop of all the effects on offer

31Chapter 5 Control the camera from Python

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

camera.resolution = (1024, 768)

The maximum resolution for photos is 4056 × 3040 (HQ Camera), 3280 × 2464 (Camera
Module v2), or 2592 × 1944 (Camera Module v1). Note: you may need to increase gpu_mem in
/boot/config.txt to achieve full resolution with the Camera Module v2.

05 Add image effects
Just as when you are using the command line, a wide range of effects can be added to

the camera in real-time, shown in the preview window. The camera.image_effect command
is used to apply a particular image effect. The options are: none (the default), negative,
solarize, sketch, denoise, emboss, oilpaint, hatch, gpen (graphite sketch effect), pastel,
watercolor, film, blur, saturation, colorswap, washedout, posterise, colorpoint,
colorbalance, cartoon, deinterlace1, and deinterlace2.

For instance, to take an image with a colour swap effect, enter the code from ch5listing4.py
and run it.

To loop through the various image effects in a preview, run the code from ch5listing5.py. Note
that this uses the camera.annotate_text command to add a text message to the preview; this
can also be applied to captured images (when using the sensor’s full field of view).

For more details on these effects and other settings, see Chapter 17 or the official picamera
documentation at picamera.readthedocs.io.

06 Shoot a video
To shoot video footage, we replace the camera.capture() command with

camera.start_recording(), and use camera.stop_recording() to stop. Enter the
example code from ch5listing6.py.

When you run the code, it records ten seconds of video before closing the preview. To play
the resulting file, open a Terminal window from the desktop and enter:

oxplayer video.h264

(Or you can use VLC instead.) Note that it may well play faster than the original frame rate. It’s
possible to convert videos to MP4 format and adjust the frame rate using the MP4Box utility
(installed with sudo apt-get install gpac), like so:

MP4Box -add video.h264:fps=30 video.mp4

All of the image effects and most of the camera settings can be applied while shooting video.
You can also turn on video stabilisation, which compensates for camera motion, by adding the
following line to your Python program:

camera.video_stabilization = True

http://picamera.readthedocs.io

32 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

from picamera import PiCamera
from time import sleep

camera = PiCamera()

camera.start_preview()
sleep(10)
camera.stop_preview()

ch5listing1.py / Python 3

from picamera import PiCamera
from time import sleep

camera = PiCamera()

camera.start_preview()
sleep(5)
camera.capture('/home/pi/Desktop/image.jpg')
camera.stop_preview()

ch5listing2.py / Python 3

from picamera import PiCamera
from time import sleep

camera = PiCamera()

camera.start_preview()
for i in range(5):
 sleep(5)
 camera.capture('/home/pi/Desktop/image%s.jpg' % i)
camera.stop_preview()

ch5listing3.py / Python 3

 DOWNLOAD
magpi.cc/cameragit5

http://magpi.cc/cameragit5

33Chapter 5 Control the camera from Python

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

from picamera import PiCamera
from time import sleep

camera = PiCamera()

camera.start_preview()
camera.image_effect = 'colorswap'
sleep(5)
camera.capture('/home/pi/Desktop/colorswap.jpg')
camera.stop_preview()

ch5listing4.py / Python 3

from picamera import PiCamera
from time import sleep

camera = PiCamera()

camera.start_preview()
for effect in camera.IMAGE_EFFECTS:
 camera.image_effect = effect
 camera.annotate_text = "Effect: %s" % effect
 sleep(5)
camera.stop_preview()

ch5listing5.py / Python 3

from picamera import PiCamera
from time import sleep

camera = PiCamera()

camera.start_preview()
camera.start_recording('/home/pi/video.h264')
sleep(10)
camera.stop_recording()
camera.stop_preview()

ch5listing6.py / Python 3

34 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

H ave you been reading the last few chapters and thinking you’d like to take a picture
with a Raspberry Pi camera with less hassle? In this tutorial we’ll show you how to
take a photo with a click of a button, just like a real camera. This could be useful for

many projects (for example, time-lapse photography), but in this chapter we are focusing on
stop-motion animation. We also show how to create your own selfie stick!

01 Wire up the button
If you haven’t already switched your Raspberry Pi off, do so now. Next, connect the

button to Raspberry Pi via a jumper wire, as shown in Figure 1. One side of the button will be
connected to ground (GND); the other is connected to the GPIO 14 pin (but you can choose
your favourite pin). We used a breadboard for our stop-motion animation project, but you could
wire the button directly to the pins (as you’ll be doing for the selfie stick later).

02 Install picamera
That’s all the hardware done. Now it’s time for the software. If you haven’t done so

already in Chapter 5, you’ll need to install the picamera library. In a Terminal window, enter:

sudo apt-get update
sudo apt-get install python-picamera python3-picamera

Stop-motion
and selfies
Wire up a physical push-button to take photos

Chapter 6

 YOU’LL NEED

• Camera Module / HQ Camera

• Push-button

• Breadboard (optional)

• Jumper wires

• Raspberry Pi case with a hole for the camera

cable (selfie stick)

• Long wires (selfie stick)

• A stick, slim metal pole etc. (selfie stick)

35Chapter 6 Stop-motion and selfies

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

If for some reason you don’t have GPIO Zero already installed (it has come pre-installed in
Raspbian for some time), do so with:

sudo apt-get install python-gpiozero python3-gpiozero

03 Stop-motion software
Because we’re focusing on stop-motion for our first project, we’re using the camera’s

preview mode so that we can set up our shot before we take it, to ensure everything is in the
frame. Then, only when the button is pressed do we save an image file. Each image file will
have a different name based on the date and time at which it is taken. This makes it easy to
assemble all the images from the shoot for post-processing.

The wonderful GPIO Zero library is used to capture the button activity; we simply define a
function that is run whenever the button is pressed. This function uses the picamera Python
library which allows us to control the camera through code, making all the normal command-
line operations available.

Download or type up the code from ch6listing1.py and either run it through Thonny or the
command line. To quit the program, press CTRL+C.

You can add the push-button to a breadboard

or wire it directly to the GPIO pins One button leg is wired to a GPIO pin

(we used GPIO14); the other to GND

 Figure 1 Connect the button

36 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

04 Other variations
You should be able to use this code as a template to create a program for whatever

photography project you have in mind. For example, you could alter the code so that the
camera takes continuous photos while the button is held down. Or you could add extra buttons
to make a variety of photography modes available.

With this sort of build, you can also start thinking about building a complete, portable,
wirelessly connected Raspberry Pi camera. For this, you can use a case into which you can fit
a portable mobile phone battery charger, along with a screen to attach to Raspberry Pi. With
a bit of modification of the code, you can have it always show the preview of the camera on
the screen. Want to record video? More modification of the code will allow for video capturing.
The only issue you might have with both of these projects is the lack of a flash or built-in light
source, so a well-lit subject would be essential.

05 Selfie stick
Next, we’ll look at making a selfie stick. A lot of people roll their eyes and complain

about vanity when it comes to the art of the selfie, but we all know it’s nothing like that. New
outfit? New glasses? Eyeliner wings perfectly symmetrical today? Why not chronicle it? It’s a
great confidence boost.

 You can use a breadboard for a small button, or connect your jumper
wires directly to the pins on a bigger one

37Chapter 6 Stop-motion and selfies

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

#importing the necessary modules
from datetime import datetime
from gpiozero import Button
import picamera
import time

b=Button(14)
pc=picamera.PiCamera()
running = True
#pc.resolution = (1024, 768)
#use this to set the resolution if you dislike the
default values
timestamp=datetime.now()
def picture():
 pc.capture('pic'+str(timestamp)+'.jpg') #taking the
picture

pc.start_preview() #running the preview
b.when_pressed=picture
try:
 while running:
 print('Active')#displaying 'active' to the shell
 time.sleep(1)
#we detect Ctrl+C then quit the program
except KeyboardInterrupt:
 pc.stop_preview()
 running = False

ch6listing1.py / Python 3 DOWNLOAD
magpi.cc/cameragit6

 Our test selfie stick is very DIY, but you can use anything as long
as you can attach a Raspberry Pi and have a long enough wire

http://magpi.cc/cameragit6

38 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Our Raspberry Pi-powered selfie stick will use a similar hardware and software setup to the
stop-motion animation project. As before, we’re wiring up a push-button to GPIO 14 and GND
pins on Raspberry Pi, but this time we need to attach the jumpers to longer wires to put the
button at the end of the ‘stick’ – we used a spatula, but anything long will do.

Your Raspberry Pi needs to be near to the camera (unless you’ve got an extra-long ribbon
cable). Attach Raspberry Pi in a case to one end of the stick with whatever means you see fit
(glue, adhesive putty, string, etc.) and then attach the button.

06 Add the code
Since the principle is the same – pressing a button to take a photo – we can use the

same code, ch6listing1.py, as for the stop-motion project. This time we don’t need the camera
preview, so you can comment out the line pc.start_preview() if you like, by adding a # to
the start of it.

Try running the code. Pressing the button will take a photo, but you’ll need to practise your
aim so you can get yourself in the frame. As before, we add a timestamp to each picture,
which helps to organise your pictures later and also results in a slight pause in the code, which
at least means you won’t take too many pictures with a slip of the button.

 Create your stop-motion scene and use the button to trigger the camera to
take pictures and save them to timestamped file

39Chapter 6 Stop-motion and selfies

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

40 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

T he Raspberry Pi Camera Module
or HQ Camera works really well in
good lighting conditions, but what if

there’s less light available? Here we show you
how to set up a simple LED flash, which will be
triggered each time you take a photo, using the
picamera Python library. We also take a look at how to shoot better images in low light when
you are not using a flash.

01 Download device tree source
Before we can wire up a flash, we need to configure a GPIO pin to use for it. This will

then be triggered each time we capture a still using picamera with the flash mode set to on. To
do this, we need to edit the VideoCore GPU default device tree source. First, install device tree
compiler with:

sudo apt-get install device-tree-compiler

Then grab a copy of the default device tree source with:

wget https://raw.githubusercontent.com/raspberrypi/firmware/
master/extra/dt-blob.dts

02 Edit the device tree source
Edit the file using your favourite text editor, such as nano:

sudo nano dt-blob.dts

Flash photography
using an LED
Add an LED flash to shoot images in low light

 YOU’LL NEED
• Camera Module / HQ Camera

• White LED

• Resistor

Chapter 7

41Chapter 7 Flash photography using an LED

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

You’ll need to find the correct part of the code for the Raspberry Pi model you’re using; for
instance, the part for Raspberry Pi 4 is found under pins_4b {.

Here you’ll find pin_config and pin_defines sections. In the pin_config section, add a
line to configure the GPIO pin (we’re using GPIO 17) that you want to use for the flash:

pin@p17 { function = "output"; termination = "pull_down"; };

03 Enable flash
Next, we need to associate the pin we added with the flash enable function by editing

it in the pin_define section. We simply change absent to internal and add a line with the pin
number, so it looks like the following:

pin-define@FLASH_0_ENABLE {
 type = "internal";
 number = <17>;
};

Note that it’s the FLASH_0 section that you need to alter: FLASH_1 is for an optional privacy
LED to come on after taking a picture, but we won’t bother with that.

The resistor limits the current

flowing through the LED

The longest leg of the LED is the

anode: connect it to GPIO 17

 Figure 1 Connect a white LED

42 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

04 Compile the blob
With the device tree source updated, we now need to compile it into a binary blob,

using the following command in a Terminal window:

dtc -q -I dts -O dtb dt-blob.dts -o dt-blob.bin

This should output nothing. Next, you need to place the new binary on the first partition of the
microSD card. In the case of non-NOOBS Raspbian installs, this is generally /boot, so use:

sudo cp dt-blob.bin /boot/

In you installed Raspbian via NOOBS, however, you’ll need to do the following instead:

sudo mkdir /mnt/recovery
sudo mount /dev/mmcblk0p1 /mnt/recovery
sudo cp dt-blob.bin /mnt/recovery
sudo umount /mnt/recovery
sudo rmdir /mnt/recovery

To activate the new device tree configuration, reboot your Raspberry Pi.

 Wire the white LED to GPIO 17 and GND via a low-ohmage resistor

43Chapter 7 Flash photography using an LED

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

05 Wire up the LED
Connect a white LED – we used a 5 mm one – to your Raspberry Pi as in Figure 1

(previous page). The LED’s anode (long leg) is connected to our flash-enabled pin, GPIO 17. To
be sure of the LED not burning out from excess current, you should add a low-ohmage resistor
(such as 100 Ω) between the LED’s cathode (short leg) and Raspberry Pi’s GND pin. Depending
on the maximum forward voltage of your LED (ours was 3.5V), you may be able to get away
without using one, but it’s best to be safe.

If you want to use higher-powered or multiple LEDs, you’ll have to think about powering
them via a suitable driver circuit, with a transistor wired to the flash pin. You may also need a
separate power supply. Note that, due to the Raspberry Pi camera’s rolling shutter, only an LED
or equivalent flash is suitable: you can’t use a xenon flash. Alternative flash/lighting methods
include NeoPixel sticks and the LISIPAROI light ring.

06 Test it out
With the LED connected, we can now test out our flash with a short Python program.

In Thonny, create a new file and enter the code from ch7listing1.py. The camera.flash_mode
= 'on' line sets the flash to trigger when we issue the capture command below; the LED will
light up briefly before the image capture, to enable the camera to set the correct exposure level
for the extra illumination, before the flash proper is triggered.

If you want the flash to trigger automatically only when it’s dark enough, you can change the
penultimate line of the code to camera.flash_mode = 'auto'.

 You need to edit the device tree source to enable a GPIO pin for the flash

44 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

07 Low-light photography
In low-light scenarios where you don’t want to use a flash, you can improve capture

of images using a few tricks. By setting a high gain combined with a long exposure time, the
camera is able to gather the maximum amount of light. Note that since the shutter_speed
attribute is constrained by the camera’s frame rate, we need to set a very slow frame rate.
The code in ch7listing2.py captures an image with a six-second exposure time: this is the
maximum time for the Camera Module v1 – if you have a v2 Camera Module, it can be
extended to ten seconds, or much longer for an HQ Camera. The frame rate is set to a sixth of
a second, while we set the ISO to 800 for greater exposure. A pause of 30 seconds gives the
camera enough time to set gains and measure AWB (auto white balance).

Try running the script in a very dark setting: it may take some time to run, including the
30-second pause and about 20 seconds for the capture itself. Note: if you’re getting a timeout
error, you may need to do a full Raspbian upgrade with sudo apt-get update and sudo
apt-get dist-upgrade.

The particular camera settings in this
script are only useful for very low light
conditions: in a less dark environment, the
image produced will be heavily overexposed,
so you may need to increase the frame rate
and lower the shutter speed accordingly.

If the image has a green cast, you’ll need
to alter the white balance manually. Turn
AWB off with camera.awb_mode = 'off'.
Then set the red/blue gains manually;.e.g.
camera.awb_gains = (1.5, 1.5).

 Using a long exposure, you can shoot stills in very dark settings

 Even a single LED can provide illumination
for close-up photography

45Chapter 7 Flash photography using an LED

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

import picamera

with picamera.PiCamera() as camera:
 camera.flash_mode = 'on'
 camera.capture('foo.jpg')

ch7listing1.py / Python 3

from picamera import PiCamera
from time import sleep
from fractions import Fraction
Set a framerate of 1/6fps, then set shutter
speed to 6s and ISO to 800
camera = PiCamera(resolution=(1280, 720),
framerate=Fraction(1, 6))
camera.shutter_speed = 6000000
camera.iso = 800
Give the camera a good long time to set gains and
measure AWB (you may wish to use fixed AWB instead)
sleep(30)
camera.exposure_mode = 'off'
Finally, capture an image with a 6s exposure. Due
to mode switching on the still port, this will take
longer than six seconds
camera.capture('dark.jpg')

ch7listing2.py / Python 3

 DOWNLOAD
magpi.cc/cameragit7

http://magpi.cc/cameragit7

46 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

N ot only is Minecraft Pi great fun to play around with, you can also use Python
programming to manipulate the Minecraft world and create various structures
within it. Going beyond this, you can even have it interact with the real world. In this

chapter, we’ll be getting Minecraft to trigger the Camera Module or HQ Camera with code when
the player enters a virtual photo booth.

The first thing you need to do is import the Minecraft API (application programming
interface). This enables you to connect to Minecraft and program it with Python. You also need
to import picamera’s PiCamera class to control the camera, and the time module to add a
small delay between taking each photo.

Open Minecraft from the applications menu (if it's not present under Games, install it via
the Recommended Software tool), then enter an existing world or create a new one. Move
the Minecraft window to one side of the screen. You’ll need to use the TAB key to take your
mouse’s focus away from the Minecraft window to move it. This will be needed later when you
switch between the Minecraft and Python windows.

Open Thonny from the applications menu. This will open up the code editor which you’ll use
to write the photo booth program.

Enter the code from ch8listing1.py, or download it. Save with CTRL+S and run the
program with F5. You should see the message ‘Find the photobooth’ appear in the Minecraft
world. This is the first part of the code. Stop the program running using CTRL+C.

Camera tests
Next, we’ll make sure the camera is set up. We’ve set the camera to show a two-second
preview, so that you can strike your pose and smile before the picture is taken. The image is
stored as a file called selfie.jpg in your home directory (/home/pi).

Make a Minecraft
photo booth
Create a photo booth in Minecraft that takes photos
of the real world. What will you see on your travels?

Chapter 8

47Chapter 8 Make a Minecraft photo booth

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Now, you need to create a photo booth in the Minecraft environment. This is done manually,
and the booth can be built wherever you want to locate it. Using any block type, build your
photo booth. It can be any shape you like, but it should have at least one block width of free
space inside so that the player can enter.

Once you have created your photo booth, you need to be able to move your player inside and
onto the trigger block. This is the block that the player stands on to run the function that you
wrote in the first step, which will then trigger the camera. In the Minecraft environment, your
position is given in reference to the x, y, and z axes. Look at the top-right of the window and
you’ll see the x, y, and z co-ordinates of your player – for example, 10.5, 9.0, -44.3. Assuming
you are still in the photo booth, then these are also the x, y, and z co-ordinates of the trigger
block in your booth.

Walk into your photo booth
Note down all three co-ordinates of your camera trigger block. When you’re playing Minecraft,
your program will need to verify that you are inside the photo booth. If you are, then it will
trigger the take_the_pic function and take a picture with the camera. To do this, Minecraft
needs to know where you are in the world.

48 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

To find your position, you use the code x, y, x = mc.player.getPos(). This saves the
x, y, and z position of your player into the variables x, y, and z. You can then use print(x) to
print the x value, or print(x, y, z) to see them all if you wish, by adding it to the code. Now
you know the position of the player, you can test to see if they’re in the photo booth.

At this point we have a photo booth, the co-ordinates of the trigger block, and code to
control the camera and take a picture. The next part of the code is to test whether the program
knows when you’re in the photo booth. To do this, we create a loop which checks if your
player’s co-ordinates match the trigger block co-ordinates. If they do, then you’re standing in
the photo booth. For this, we use a simple if statement, which is known as a conditional.

Change the if line in the code to ensure the co-ordinates you enter are those of your photo
booth. Save and run your code to test it: walk into your photo booth and you should see the
message ‘You are in the photobooth!’ in the Minecraft window.

You will note that the if statement checks if the x value is greater than or equal to 10.5: this
is to ensure that it picks up the block, as it could have a value of 10.6. Remember to replace
the x, y, and z values with those from your photo booth. After the message is printed, the same
preview and camera snap will happen as before the while loop. The loop then resets itself so
you can enter it again and take another photo!

Steve is your ‘shutter’ in the

Minecraft world: move him

to the booth to take a photo

Place the booth anywhere in your world.

Give it a special room in your house, or use

it as a trap to see if someone is in your world

Construct your photo booth however

you wish; just make sure the code

knows where it lives

49Chapter 8 Make a Minecraft photo booth

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

from mcpi.minecraft import Minecraft
from picamera import PiCamera
from time import sleep

mc = Minecraft.create()
camera = PiCamera()

mc.postToChat("Find the photo booth")

camera.start_preview()
sleep(2)
camera.capture('/home/pi/selfie.jpg')
camera.stop_preview()

while True:
 x, y, z = mc.player.getPos()

 sleep(3)

 if x >= 10.5 and y == 9.0 and z == -44.3:
 mc.postToChat("You're in the photo booth!")
 sleep(1)
 mc.postToChat("Smile!")
 sleep(1)
 camera.start_preview()
 sleep(2)
 camera.capture('/home/pi/selfie.jpg')
 camera.stop_preview()

 sleep(3)

ch8listing1.py / Python 3 DOWNLOAD
magpi.cc/cameragit8

http://magpi.cc/cameragit8

50 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

W e’ve all been there. You’ve gone
out for the day and you know you
closed your bedroom door, but you

come back and it’s slightly ajar. Who’s been in
there? Were they friend or foe? In this chapter
we’ll use the Camera Module or HQ Camera
as a spy camera that takes a picture when
anyone’s presence is detected by a passive
infrared (PIR) sensor. Here we’re using a
Raspberry Pi Zero – which is easier to hide away due to its size – with a special camera cable
for it, but you can use any Raspberry Pi model. Unless you want to power it from the mains,
you’ll also need a portable power supply such as a mobile phone battery pack.

01 Getting started
First, connect your Camera Module or HQ Camera to Raspberry Pi. Note that if you’re

using a Raspberry Pi Zero, you’ll need a special adapter cable since its camera connector is
smaller: the cable’s silver connectors should face the Raspberry Pi circuit board. You’ll also
need to have enabled the camera in Raspberry Pi Configuration, as explained in Chapter 1.

We’ll be using the picamera Python library to trigger our spy camera, so if you haven’t yet
installed it, open a Terminal window and enter:

sudo apt-get update
sudo apt-get install python-picamera python3-picamera

02 Wire up the circuit
The circuit for this is fairly simple, especially as the PIR does not need a resistor as

part of its setup. The PIR comes with three connection pins: VCC, GND, and OUT. If you can’t

Make a spy camera
Set up a motion-activated spy camera in your room

Chapter 9

 YOU’LL NEED
• Camera Module / HQ Camera

• PIR sensor magpi.cc/pir

• Raspberry Pi Zero camera cable

(optional) magpi.cc/zerocamcable

• Portable power supply (optional)

• Jumper wires

http://magpi.cc/pir
http://magpi.cc/zerocamcable

51Chapter 9 Make a spy camera

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

find their labels on the bottom of the sensor, lift off the plastic golf-ball-like diffuser and you
should see them on the top of the board. VCC needs to be connected to a 5V power pin,
GND needs to go to a ground pin, and then there’s the OUT wire which will be our input. We’re
connecting it to GPIO 14.

If your Raspberry Pi Zero has GPIO pins attached, you can use female-to-female jumper
wires to make the connections, as shown in Figure 1. Otherwise you can loop the wire around
the GPIO holes and use a bit of putty to keep them in place, or a dab of glue from a glue gun on
a low setting. Soldering is an option if you want to create a permanent spy camera device.

03 Write the code
Now we’ve got it all wired up, it’s time to start coding our spy camera. In the Thonny

code editor, create a new file and enter the code from ch9listing1.py. This script uses two
libraries: GPIO Zero and the standard picamera library. GPIO Zero can be used to get a reading
from the PIR motion sensor very easily, which can then be tied into the picamera code so it
takes a photo when motion is detected.

At the top, we import MotionSensor from GPIO Zero and PiCamera from picamera. Since
we’ll be giving each photo a timestamp, we also import datetime, along with sleep from the
time library.

 Figure 1 Connect a PIR sensor

The passive infrared (PIR)

sensor will detect the

presence of anyone nearby
Jumper wires are used to connect the

PIR’s pins to Raspberry Pi’s GPIO, either

to the pins of a header or to the hole

contacts if none has been attached

52 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

In a never-ending while True: loop, we use GPIO Zero’s handy wait_for_motion function
to pause the code until the PIR detects any motion. When it does, we set the photo file name
to the current time and date, then take the picture. To enable the PIR to settle, we sleep for five
seconds before returning to the top of the loop to wait for motion again.

04 Final preparations
You can run the code first to give it a test. You might want to change the sensitivity

and/or trigger time, which you can do by adjusting the little orange potentiometer screws on
the side of the PIR board: Sx adjusts sensitivity, while Tx alters the trigger time.

Once that’s done, we’ll get the program to start automatically whenever we boot up the
Raspberry Pi. To do so, open up a Terminal window and edit the profile config file with sudo
nano /etc/profile. To the bottom of the file, add this line:

sudo python spy.py

In addition, to get Raspberry Pi to boot up slightly faster and, more importantly, to use a little
less power so your battery lasts longer, it’s best to get it to boot directly to the command line
rather than booting to the desktop. The easiest way to change this is to open Preferences >
Raspberry Pi Configuration from the desktop; in the default System tab, change Boot to the ‘To

 Camouflaged against Yoshi, the camera will take candid snaps of
anyone who comes close to your game collection

53Chapter 9 Make a spy camera

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

CLI’ option. Alternatively, open a Terminal window and enter sudo raspi-config to open the
Configuration Tool; select Boot Options > Desktop / CLI and option B2 – Console Autologin
Text console.

05 Hide your camera
Now you need to find a good place to hide your camera. The default cable for

the camera is limited by length, while the PIR can have its wires lengthened, so keep
that in mind when building your system. Alternatively, you could get a camera extender
(magpi.cc/camextender) to link your cable to a standard-width one. Longer standard-width
cables – of up to 2 m – are also available if you are not using a Raspberry Pi Zero.

Hiding your Raspberry Pi and battery behind a plush toy or photo frame can work well (you
could even put a dummy photo up and cut a hole in it for the camera to look through). The PIR
has quite a wide range, so put it up high where people are unlikely to look.

06 Check for intruders
All you need to do now is plug in the power supply and your Raspberry Pi Zero will turn

on and automatically run the script. Do some tests to make sure the camera is facing the right
way. Leave it running during the day and then when you get back, plug it into a monitor, stop
the script, and run startx to get the GUI up. From here you can see the pictures it has taken:
crucial evidence to catch your dog or sibling red-handed.

#!/usr/bin/env python

from gpiozero import MotionSensor
from picamera import PiCamera
from datetime import datetime
from time import sleep

sensor = MotionSensor(14)
camera = PiCamera()

while True:
 sensor.wait_for_motion()
 filename = datetime.now().strftime("%H.%M.%S_%Y-%m-
%d.jpg")
 camera.capture(filename)
 sleep(5)

ch9listing1.py / Python 3 DOWNLOAD
magpi.cc/cameragit9

http://magpi.cc/camextender
http://magpi.cc/cameragit9

54 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

I s your door a bore? Open and close, open and close. Snoozefest. Surely it can do more
than that? How about a smart door that knows when someone approaches, when the post
arrives, and can even offer remote viewing of the peephole? You can also add intelligent

lighting, a controllable door lock, and facial recognition, all powered with your Raspberry Pi. So,
let’s ignore super-expensive door systems and build our own. You can do as much, or as little,
as you like of this project and there’s plenty of room for new and inventive uses.

01 Prepare your Raspberry Pi
Although you can use any WiFi-capable model, this is a perfect project for the

Raspberry Pi 3A+. Start by attaching Raspberry Pi to the Touch Display and preparing a
microSD card with the latest Raspbian release. To allow easier access and mounting, we’ve
detached the control board from the back of the screen, taking great care of the ribbon cable.
Eventually, they’ll be put in a smart 3D-printed case. Now, get your Raspberry Pi set up and
make sure to sudo apt update && sudo apt upgrade before proceeding.

02 Attach the camera
We’re going to keep an eye on the outside world by replacing the door’s peephole

with the Raspberry Pi camera. A peep-hole is typically a two-piece barrel that screws together

Smart door
Adding a Raspberry Pi to your door has magical results. Want
to see who’s at the door or know when the post has arrived?
Control the lock? Read on…

Chapter 10

 YOU’LL NEED

• Raspberry Pi Touch Display magpi.cc/touch

• Camera Module / HQ Camera

• PIR sensor magpi.cc/pir

• 2 × Security door contact reed switch

magpi.cc/doorswitch

• Wired doorbell magpi.cc/wiredbell

• PAM8302 amplifier magpi.cc/pam8302

• Speaker magpi.cc/3inspeaker

• Magnetic access control system

magpi.cc/magneticaccess

http://magpi.cc/touch
http://magpi.cc/pir
http://magpi.cc/doorswitch
http://magpi.cc/wiredbell
http://magpi.cc/pam8302
http://magpi.cc/3inspeaker
http://magpi.cc/magneticaccess

55Chapter 10 Smart door

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

and can be easily unscrewed from the inside.
Remove the barrel and cover the hole with
the camera. We’re just going to affix this with
tape for now; a printed mount will come later.
Mount the screen and Raspberry Pi to the door
(we used Command Strips), placed so you can
attach the camera’s ribbon cable to Raspberry
Pi once it’s shut down. Make sure the camera is enabled in Raspberry Pi Configuration.

03 Footsteps approaching!
The first smart thing our door is going to do is detect someone approaching it. A

cheap PIR sensor is perfect for the job. These cool little geodesic domes are triggered by heat
and are the same gizmos that you find in motion-sensor lights, switches, and security systems.
Connect to Raspberry Pi as shown in Figure 1, checking whether you have a 5 V or 3.3 V
sensor. Sensitivity and duration of a ‘detection’ can be controlled by the two potentiometers on
the PIR board. Mount this outside in a suitable location to ‘watch’ your door.

04 Monitor the door and letterbox
We have two magnetic reed switches, the type you find on windows and doors for

security systems. They are made up of two parts: the wired part is a reed switch and the
unwired a magnet. When the magnet meets the switch, it closes. If we attach the magnet
to the door and the switch to the frame, when the door opens, so does the switch. There’s
no polarity to worry about, so connect
one wire to GPIO 26 and the other
to the adjacent GND. Repeat for the
letterbox using GPIO 19. You may need
a breadboard.

05 Ding dong!
If we replace the doorbell with

our own button, we can take a photo
with the Camera Module or HQ Camera
when someone presses it and send
a notification. Way better. Mount a
standard wired doorbell, which after all
is just a momentary contact button, to
the outside door frame and wire it back
to Raspberry Pi using GPIO 13 and an
available GND pin. If you’re prototyping
on a breadboard, a tactile switch will
do fine.

 Figure 1 The GPIO
wiring that’s needed
for the various
inputs and outputs

 NIGHT IS DARK
If you want the camera to work well at night,

you may want to consider a Pi NoIR Camera

Module supported with some infrared lighting.

56 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

06 Sounds good
There’s little point in a doorbell that makes no sound. We can use the small, but

surprisingly powerful, PAM8302 amplifier with a speaker to make some noise. Supply power
by soldering ‘Vin’ to an available 3V3 pin on Raspberry Pi, and ground to GND. To get an audio
signal, you can tap the audio connector’s signal and ground, then connect them to A+ and A-
respectively. Finally, solder the speaker to the larger + and - terminals. When prototyping, you
can skip this and use any active or passive speaker via the audio connector on Raspberry Pi.

07 Code
Double-check all your connections and then power up your Raspberry Pi. To use the

code published here (overleaf), open a Terminal and enter:

mkdir ~/smartdoor
nano ~/smartdoor/smartdoor_test.py

The screen automatically

displays video when an

approaching person is detected

Cheap and simple reed switches

monitor the door and the letterbox

57Chapter 10 Smart door

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Now type in the code as shown. Alternatively, to download all the code:

cd
git clone https://github.com/themagpimag/cameraguideCh10

To enable it to play our doorbell sample:

sudo apt install mpg123

Now test with:

python3 ~/smartdoor/smartdoor_test.py

Watch the console output. If everything is working, you should be able to trigger the PIR, the
reed switches, and the doorbell. The camera will capture ten seconds of video when motion is
detected, and a photo when the doorbell is pressed. These are both saved to the desktop.

08 Get alerts!
Let’s make this useful. Install Pushover on your phone, head over to pushover.net,

sign up for a trial account, then log in and make a note of your User Key (a long string of
characters). Now create a new Application
and give it a name. Once created, you’ll
see an API Token. Make a note of this
too. From the GitHub repository, edit
smartdoor.py and add the User Key and
API Token where shown. Run this version
and you’ll get phone alerts for each event
and even a photo attachment when the
doorbell is pressed.

09 Intelligent
porch light

Following on from the Trådfri lighting
tutorial in The MagPi #75 (magpi.cc/75),
if you have an external porch light, why
not make it smart! The file porch.py will
connect a Trådfri smart light to an API
that provides sunrise and sunset times
for your location. Leave the script running
and the light will switch on and off at the
correct times. Additionally, it monitors the

 The web app can run on the touchscreen,
as well as on mobile devices or desktop
browsers. Release the door from anywhere!

http://pushover.net
http://magpi.cc/75

58 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

 You may want to prototype this project and test it before taking a drill to your door!

59Chapter 10 Smart door

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

PIR sensor and will switch to full brightness
when someone approaches! To use the script,
get your latitude and longitude (you can use
Google Maps or Earth) and edit porch.py as
directed in the file.

10 Door lock
If you’re interested in being able to control your door’s lock, you may see that some

solutions are very pricey. One that is perfect for experimentation is the magnetic hold lock,
which uses an electromagnet to hold the door closed. The one we’ve used can withstand
180 kg of force, although stronger ones are available. The magnet mounts on the door and
the electromagnet on the frame. The provided PSU contains a relay that can be powered by
Raspberry Pi by simply connecting it to a spare GPIO line and ground. Please note this is no
replacement for a proper door lock system.

11 Web app
If would be great to see what our door has been up to remotely, so a web app seems

the next logical step. In the directory called webapp is a Python script that uses Flask
to provide a web server that is usable on mobile devices. You can take a photo from the
peephole, see the last recorded video, and even control the magnetic door lock from Step 10.
Simply run the app alongside the others. Better still, set smartlights.py, porch.py, and
webapp/smartdoor.py to start on boot (see the repository README).

12 Facial recognition
Once a futuristic technology, decent facial recognition is now well within the grasp

of Raspberry Pi. Using the doorbell photo taken by Raspberry Pi, we can recognise a face
using reference photos and send an alert to Pushover with the name of the caller! In a secure
environment, a recognised face could even trigger the lock or you could play a welcome
announcement. The install process is a little complicated, so if this interests you, see the
documentation in the GitHub repository in the face_recognition directory of the
‘smartdoor’ repository.

13 Over to you
Here we’ve given you the basics to get going, but more complex events are possible.

You could alert different people based on facial recognition or play custom doorbell tones.
And, if you had problems with deliveries, video evidence can build up automatically. On a
serious note, remember a lot of this is ‘just for fun’ and designed to inspire, so unless you’re
prepared to put in the work hardening the code and including failsafes, don’t rely on this, or
possibly make it as a fun kids’ door project (but maybe without the lock!).

 GET THE RIGHT LOCK
Magnetic door locks vary in size and shape;

measure twice and order once!

http://smartlights.py

60 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

from picamera import PiCamera
from gpiozero import MotionSensor
from gpiozero import Button
from time import sleep
import os
import subprocess
import sys

print('Getting smart...')

Set up all our devices
camera = PiCamera()
motion = MotionSensor(17)
doorSensor = Button(26)
letterbox = Button(19)
doorbell = Button(13)

def motionDetected():
 print('Motion detected, video recording')
 os.system('DISPLAY=:0 xset s reset') # Wakes the display up
 camera.start_preview()
 camera.start_recording('/home/pi/Desktop/motion.h264')
 sleep(10)

def motionStopped():
 print('Stopping video recording')
 camera.stop_recording()
 camera.stop_preview()

def doorOpen():
 print('Door open')

def doorClosed():
 print('Door closed')

def letterboxOpen():
 print('You got mail!')

def doorbellPressed():
 subprocess.Popen(['mpg123', '/home/pi/smartdoor/doorbell.mp3'],
 stdout=subprocess.PIPE, stderr=subprocess.STDOUT)

smartdoor_test.py / Python 3 DOWNLOAD
magpi.cc/cameragit10

http://magpi.cc/cameragit10

61Chapter 10 Smart door

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

 camera.capture('/home/pi/Desktop/doorbell.jpg')
 print('Someone\'s at the door!')

Attach our functions to GPIOZero events
motion.when_motion = motionDetected
motion.when_no_motion = motionStopped
doorSensor.when_pressed = doorClosed
doorSensor.when_released = doorOpen
letterbox.when_released = letterboxOpen
doorbell.when_released = doorbellPressed

print('Smart door is smart')

Loop forever allowing events to do their thing
try:
 while True:
 pass
except KeyboardInterrupt:
 print('Smart door no longer smart')
except:
 print('Oh dear')

smartdoor_test.py (cont.) / Python 3

62 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

A utomatic number-plate recognition
(ANPR) is becoming more and
more commonplace. Once the

exclusive realm of the police, the technology
used to accurately read car number-plates
can now be found in supermarket and
airport car parks. It wasn’t long ago that
this technology was extremely expensive to
purchase and implement. Now, even a Raspberry Pi has the ability to read number-plates with
high accuracy using the Camera Module (or HQ Camera) and open-source software. Let’s see
what’s possible by building a system to detect and alert when a car comes onto the driveway.

01 Pick a spot
First things first: where are we going to put it? Although this project has lots of

applications, we’re going to see who’s home (or not) by reading number-plates of cars
coming and going on a driveway. This means our Raspberry Pi is probably going to live
outside; therefore, many environmental constraints come into place. You’ll need USB 5 V
power to your Raspberry Pi and a mounting position suitable for reading plates, although the
software is surprisingly tolerant of angles and heights, so don’t worry too much if you can’t
get it perfectly aligned.

02 Get an enclosure
As your Raspberry Pi is going to live outside (unless you have a well-placed window),

you’ll need an appropriate enclosure. For a proper build, get an IP67 waterproof case (e.g.
magpi.cc/ip67kit). We’re opting for homemade, and are using a Raspberry Pi 3 A+ with the
RainBerry – a 3D-printable case that, once you add some rubber seals, provides adequate
protection. Make sure whatever you choose has a hole for the camera.

Car Spy Pi
Who’s that parked on the driveway?
Find out automatically using ANPR

Chapter 11

 YOU’LL NEED

• Camera Module / HQ Camera

• Suitable outdoor enclosure,

e.g. magpi.cc/rainberry

• Pushover account (optional) pushover.net

http://magpi.cc/ip67kit
http://magpi.cc/rainberry
http://pushover.net

63Chapter 11 Car Spy Pi

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

03 Prepare your Raspberry Pi
As we don’t need a graphical user interface, Raspbian Lite is our operating system

of choice. Any Raspberry Pi can handle this task, although if you want the fastest image
processing possible, you probably want to avoid the Zero models and get a nice, zippy Model
3B+ or 4. Get your operating system set up, make sure you’ve done the necessary sudo apt
update && sudo apt -y upgrade and have configured WiFi if you’re not using Ethernet.
Finally, make sure your Camera Module (or HQ Camera) is connected and enabled. You can
check this by running sudo raspi-config and looking under ‘Interfacing Options’.

04 Install openALPR
Thankfully, we don’t need to be experts in machine learning and image processing to

implement ANPR. An open-source project, openALPR provides fast and accurate processing
just from a camera image. ‘ALPR’ is not a mistake: this US project is ‘Automatic License
Plate Recognition’. Thanks to APT, installation is straightforward. At the command line, enter
the following:

sudo apt install openalpr openalpr-daemon openalpr-utils
libopenalpr-dev

This may take a while, as many supporting packages need to be installed, such as Tesseract,
an open-source optical character recognition (OCR) tool. This, coupled with code that
identifies a number-plate, is what works the magic.

The Camera Module is

protected from the elements by

a clear cover and rubber O-ring

This case is water-resistant with

rubber seals protecting the gaps

64 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

05 Time for a test
Once installed, you’ll be unceremoniously dropped back to the command prompt.

OpenALPR has installed a command-line tool to make testing its capabilities easier and they
have also kindly provided a sample image. On the command line, enter the following:

cd
wget http://plates.openalpr.com/ea7the.jpg

This is a sample USA plate image and a tough one too. Wget grabs the file from the web and
places it in your home directory. Let’s see if we can recognise it:

alpr -c us ea7the.jpg

All being well, you’ll see a report on screen. The most likely ‘match’ should be the same as the
file name: EA7THE.

06 Install Python libraries
We can use openALPR in Python, too. First, install the libraries using pip. If you don’t

have pip installed, run:

 Protect your Raspberry Pi with a waterproof case

65Chapter 11 Car Spy Pi

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

sudo apt install python-pip

To install the libraries:

pip install openalpr picamera python-pushover

Now test everything is working by running Python (type python) and enter the following code
line by line at the >>> prompt:

import json
from openalpr import Alpr

alpr = Alpr("us", "/etc/openalpr/openalpr.conf",
"/usr/share/openalpr/runtime_data")
results = alpr.recognize_file("/home/pi/ea7the.jpg")
print(json.dumps(results, indent=4))
alpr.unload()

If you’ve not seen JSON-formatted text before, this might seem a bit much, but you should see
the correct plate number returned as the first result.

07 Get a Pushover token
So that we can get an alert when a car arrives or leaves, we’re using old favourite

Pushover (pushover.net), which makes sending notifications to mobile phones a breeze.
There’s a free trial, after which it’s a flat fee of $4.99 per device, with no subscription or
limits. Once logged in, go to ‘Your Applications’ and make a note of your User Key. Then click
‘Create an Application/API Token’. Call it
‘ANPR’, leave all the other fields blank, and
click ‘Create Application’. Now make a note
of the API Token; you’ll need this and the
User Key for your code.

08 Typing time
Now you have everything you need

to create your ANPR application. Enter the
code listing shown here or download it from
magpi.cc/cameragit11. Save it as anpr.py in
your home directory. Edit the file and enter
your User and App tokens where prompted.
Save the file, then test by entering:

 When a car arrives or leaves our driveway,
we receive an alert in seconds

http://pushover.net
http://magpi.cc/cameragit11

66 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

python anpr.py

The code makes use of the Camera Module (or HQ Camera) and openALPR in tandem.
Every five seconds, the camera takes a picture which is passed to openALPR for analysis.
If a licence plate is found, we get the number. If there has been a change, an alert is sent to
Pushover, which is then forwarded to any registered mobile devices.

09 Make your list
If you want to have more friendly names rather than just the plate number, try adding a

Python dictionary just after the import statements, like this:

lookup = {
 "ABC123": "Steve McQueen",
 "ZXY123": "Lewis Hamilton"
 }

Then change all instances of number_plate in the alert text as follows:

lookup[number_plate]

Now you’ll get a friendly name instead. See if you can handle what happens if the plate isn’t
recognised.

10 Run on boot
A key part of any ‘hands-free’ Raspberry Pi installation is ensuring that in the event of

a power failure, the required services start up again. There are many ways of doing this; we’re
going use one of the simpler methods.

sudo nano /etc/rc.local

Find the final line, exit 0 and enter the following on the line above:

#Start ANPR Monitoring
/usr/bin/python /home/pi/anpr.py

Press CTRL+X then Y to save the file. Finally, run the earlier pip command again, using sudo
this time to install the libraries for the root user:

sudo pip install openalpr picamera python-pushover

On reboot, the code will start up and run in the background.

67Chapter 11 Car Spy Pi

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

11 Add logging and curfews
One use of this installation is to track the times cars come and go. This can be

especially useful for young drivers who have curfew restrictions on their insurance. See if you
can augment the code to check whether a registration plate has not been seen after a certain
time. For example, if your younger family members have such a restriction, send them an alert
to their phone if their car isn’t in the driveway 30 minutes beforehand. You might save them an
insurance premium increase! Also, why not log all the comings and goings to a file? A bit of
data analysis might help reduce car usage or fuel costs.

12 Make it your own
As ever, it’s over to you. Now you have the ability to track and record registration

plates, there are many different applications for you to explore. Since all the analysis of the
image is done locally, no internet connection is required for the system to work. Is there
someone ‘borrowing’ your parking space at work? Catch ’em in the act! Why not take your
Car Spy Pi on the road? It could record every vehicle you encounter, which may be useful
should something untoward happen. Combine a Raspberry Pi Zero with a ZeroView
(magpi.cc/zeroview) and you’re all set.

 Our target. The software does a great job of recognising number-plates
from different heights and angles

http://magpi.cc/zeroview

68 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

from openalpr import Alpr
from picamera import PiCamera
from time import sleep
import pushover

Pushover settings
PUSHOVER_USER_KEY = "<REPLACE WITH USER KEY>"
PUSHOVER_APP_TOKEN = "<REPLACE WITH APP TOKEN>"

'gb' means we want to recognise UK plates, many
others are available
alpr = Alpr("gb", "/etc/openalpr/openalpr.conf",
 "/usr/share/openalpr/runtime_data")
camera = PiCamera()
pushover.init(PUSHOVER_APP_TOKEN)
last_seen = None

try:
 # Let's loop forever:
 while True:

 # Take a photo
 print('Taking a photo')
 camera.capture('/home/pi/latest.jpg')

 # Ask OpenALPR what it thinks
 analysis = alpr.recognize_file("/home/pi/latest.jpg")

 # If no results, no car!
 if len(analysis['results']) == 0:
 print('No number plate detected')

 # Has a car left?
 if last_seen is not None:
 pushover.Client(PUSHOVER_USER_KEY).send_message(
 last_seen + " left",
 title="Driveway")

 last_seen = None

 else:

anpr.py / Python 3 DOWNLOAD
magpi.cc/cameragit11

http://magpi.cc/cameragit11

69Chapter 11 Car Spy Pi

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

 number_plate = analysis['results'][0]['plate']
 print('Number plate detected: ' + number_plate)

 # Has there been a change?
 if last_seen is None:
 pushover.Client(PUSHOVER_USER_KEY).send_message(
 number_plate + " has arrived",
title="Driveway")
 elif number_plate != last_seen:
 pushover.Client(PUSHOVER_USER_KEY).send_message(
 number_plate + " arrived and " + last_seen +
" left",
 title="Driveway")

 last_seen = number_plate

 # Wait for five seconds
 sleep(5)

except KeyboardInterrupt:
 print('Shutting down')
 alpr.unload()

anpr.py (cont.) / Python 3

70 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

E ver wondered what lurks at the bottom of your garden at night, or which furry
friends are visiting the school playground once all the children have gone home?
Using a Raspberry Pi and Camera Module (or HQ Camera), along with Google’s

Vision API, is a cheap but effective way to capture some excellent close-ups of foxes, birds,
mice, squirrels and badgers, and to tweet the results.

Using Google’s Vision API makes it really easy to get AI to classify our own images. We’ll
install and set up some motion detection, link to our Vision API, and then tweet the picture if
there’s a bird in it. It’s assumed you are using a new Raspbian installation on your Raspberry
Pi and you have your Raspberry Pi camera set up (see Chapter 1). You will also need a Twitter
account and a Google account to set up the APIs.

Motion detection with Pi-timolo
There are many different motion-detection libraries available, but Pi-timolo was chosen as it is
easy to edit the Python source code.

Build a wildlife
camera trap
Uncover the goings-on in your garden, pond, or school
playground when no one’s looking with this easy-to-use
Raspberry Pi camera trap

Chapter 12

 YOU’LL NEED

• Camera Module / HQ Camera

• Pi NoIR Camera Module (optional)

magpi.cc/ircamera

• Waterproof container (like a jam jar)

• ZeroCam NightVision (optional)

magpi.cc/zerocamnight

• Blu Tack, Sugru, elastic bands, carabiners

• ZeroView (optional) magpi.cc/zeroview

http://magpi.cc/ircamera
http://magpi.cc/zerocamnight
http://magpi.cc/zeroview

71Chapter 12 Build a wildlife camera trap

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

First, make sure Raspbian is up to date. In a Terminal, enter:

sudo apt update && sudo apt upgrade

Then use the following command to perform an automatic installation of Pi-timolo:

curl -L https://raw.github.com/pageauc/pi-timolo/master/source/
pi-timolo-install.sh | bash

Once installed, test it by typing in cd ~/pi-timolo and then ./pi-timolo.py to run the
Python script. At this point, you should be alerted to any errors such as the camera not being
installed correctly, otherwise the script will run and you should see debug info in the Terminal
window. Check the pictures by waving your hand in front of the camera, then looking in
Pi-timolo > Media Recent > Motion. You may need to change the image size and orientation
of the camera; in the Terminal window, enter nano config.py and edit these variables:
imageWidth, imageHeight, and imageRotation.

While we’re here, if you get a lot of false positives, try changing the motionTrackMinArea
and motionTrackTrigLen variables and experiment with the values by increasing to reduce
sensitivity. See the Pi-timolo GitHub repo (magpi.cc/pitimologit) for more details.

Use sealable containers and jars

and make sure they’re watertight

Get a decent power bank that will last for

at least seven or eight hours overnight

Position the camera low

and ensure it’s tight up

against any glass or plastic

http://magpi.cc/pitimologit

72 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

There will also be some editing of the pi-timolo.py file, so don’t close the Terminal
window. Code needs to be added to import some Python libraries (ch12listing1.py), and
also added to the function userMotionCodeHere() to check with the Vision API before
tweeting (ch12listing2.py). We can do this now in preparation of setting up our Google and
Twitter API. You should still be in the Pi-timolo folder, so type nano pi-timolo.py and add
the imports at the top of the file. Next, press CTRL+W to use the search option to find the
UserMotionCodeHere() function and where it’s called from. Add the new code into the function
(line 240), before the return line. Also locate where the function is being called from (line 1798),
to pass the image file name and path. Press CTRL+X then Y and ENTER to save. Next, we’ll set
up the APIs.

Animal detection and tweeting
We will be using Google Label Detection, which returns a list it associates with the image. First
off, you will need to install the Google Cloud Vision libraries on your Raspberry Pi, so type pip
install --upgrade google-cloud-vision into your Terminal window. Once finished, run
pip install google-cloud-storage.

Now you need authorisation. Go magpi.cc/apiexplorer and follow the instructions to create
a new project (you may need to log in or create a Google account). Go to the API Dashboard
and search for and enable the Cloud Vision API. Then go to API & Services > Credentials,
click on Create Credentials and select Service Account from the drop-down. Fill in the details,
then click Create. Don’t bother to select a Role, just click Continue. Click Create Key and you’ll
be prompted to download a JSON file. You need this as it contains your service account

 Unleash your inner Springwatch

http://magpi.cc/apiexplorer

73Chapter 12 Build a wildlife camera trap

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

key to allow you to make calls to the API locally. Rename and move the JSON file into your
pi-timolo folder and make a note of the file path. Next, go back to pi-timolo.py and add the
line: os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "path_to_your_.json_
credential_file" below import os to reference the credentials in your JSON file.

Finally, set up a Twitter account if you haven’t already and install Tweepy by entering sudo
pip install tweepy into a Terminal window. Once set up, visit apps.twitter.com and create
a new app, then click on Keys and Access Tokens. Edit the code in userMotionCodeHere()
with your own consumer and access info, labelled as ‘XXX’ in the code listing. Finally, place
your camera in front of your bird feeder and run ./pi-timolo.py. Any pictures taken of a bird
should now be tweeted! If you want to identify a different animal, change the line if "bird"
in tweetText: animalInPic = true.

Please note that although the API works well, it can’t always discern exactly what’s in
the picture, especially if partially in view. It also won’t distinguish between types of bird, but
you should have more success with mammals. You can test the API out with some of your
pictures at magpi.cc/visionai and visit twitter.com/pibirdbrain to see example tweets (scroll
down a bit). Good luck and happy tweeting!

 Get great photos with night-vision cameras

http://apps.twitter.com
http://magpi.cc/visionai
http://twitter.com/pibirdbrain

74 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

add this in at the very top, under
print('Loading') along with the other
libraries imported
import io
import tweepy
from google.cloud import vision
from google.cloud.vision import types
from google.cloud import storage

ch12listing1.py / Python

search for userMotionCodeHere.
There will be 2 results,
edit the second so you are passing filename to the function
userMotionCodeHere(filename)

make sure you include filename as a parameter in the function
def userMotionCodeHere(filename):
 # we need to create an instance of the Google Vision API
 client = storage.Client()
 # instantiates a client
 client = vision.ImageAnnotatorClient()

 # loads the image into memory
 with io.open(filename, 'rb') as image_file:
 content = image_file.read()

 image = types.Image(content=content)

 # performs label detection on the image file
 response = client.label_detection(image=image)
 # pass the response into a variable
 labels = response.label_annotations

 # we have our labels, now create a string to add to the text
 # for debugging - let’s see what Google thinks is in the image
 print('Labels:')
 # add labels to our tweet text
 tweetText = "Labels: "

ch12listing2.py / Python

 DOWNLOAD
magpi.cc/cameragit12

http://magpi.cc/cameragit12

75Chapter 12 Build a wildlife camera trap

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

 animalInPic = False
 for label in labels:
 print(label.description)
 tweetText = tweetText + " " + label.description
 # edit this line to change the animal you want to detect
 if "bird" in tweetText: animalInPic = true

 # set up Tweepy
 # consumer keys and access tokens, used for authorisation
 consumer_key = ‘XXX’
 consumer_secret = ‘XXX’
 access_token = ‘XXX’
 access_token_secret = ‘XXX’

 # authorisation process, using the keys and tokens
 auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
 auth.set_access_token(access_token, access_token_secret)

 # creation of the actual interface, using authentication
 api = tweepy.API(auth)

 # send the tweet with photo and message
 photo_path = filename
 # only send tweet if it contains a desired animal
 if animalInPic:
 api.update_with_media(photo_path, status=tweetText)

 return

ch12listing2.py (cont.) / Python

76 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

T here are plenty of underwater sports cameras available, but they can be quite
expensive, especially if you want to be able to control them remotely. In this
chapter we’re going to use readily available Raspberry Pi add-ons to make a cheaper,

customisable camera unit. There are lots of options and alternative sources of components
for a project like this. For example, the Pimoroni Enviro board (or earlier Enviro pHAT) can
report back information about the environment in which the camera is operating, especially
how much light is available.

01 Find a suitable container
To protect the electronics inside it, the container for your Raspberry Pi and camera

needs to be watertight and to have at least a see-through lid. You can find food container
boxes with a very tight seal, but these tend to be translucent rather than transparent. The
size of box will probably determine your choice of Raspberry Pi model and power source.
Raspberry Pi Zero W boards are great as they are so small and have built-in wireless LAN.
You can also save space by using a LiPo battery instead of a standard power bank (although
you’ll need a boost regulator too, such as the Pimoroni Zero LiPo).

Take your camera
underwater
Explore the underwater world with your camera

Chapter 13

 YOU’LL NEED

• Camera Module / HQ Camera

• Transparent, waterproof box

magpi.cc/waterproofcase

• Portable power source

• hostapd and dnsmasq packages

• Python Flask library

• WiFi dongle (if not using a Raspberry Pi model

with built-in wireless LAN)

• Enviro board (optional) magpi.cc/enviro

• ZeroView (optional) magpi.cc/zeroview

http://magpi.cc/waterproofcase
http://magpi.cc/enviro
http://magpi.cc/zeroview

77Chapter 13 Take your camera underwater

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

02 Set Raspberry Pi as a wireless access point
Start from a fresh Raspbian install on a microSD card. Open up a Terminal window and

enter the following commands to update the APT database and install the required packages:

sudo apt-get update
sudo apt-get install -y dnsmasq hostapd python3-flask

First, since the configuration files aren’t ready yet, turn off dnsmasq and hostapd:

sudo systemctl stop dnsmasq
sudo systemctl stop hostapd

Next, configure your wireless interface to have a static IP address:

sudo nano /etc/dhcpcd.conf

Go to the end of the file and edit it so that it looks like the following (we're using the IP address
192.168.4.1, but you may want to choose a different one):

interface wlan0
 static ip_address=192.168.4.1/24
 nohook wpa_supplicant

 You can save space by using a LiPo battery (via a boost regulator) instead of a power bank

78 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Now restart the dhcpcd daemon and set up the new wlan0 configuration:

sudo service dhcpcd restart

Next, you need to edit the /etc/dnsmasq.conf and /etc/hostapd/hostapd.conf files – see
magpi.cc/accesspoint for details – ensuring that the IP addresses are consistent with your
settings in /etc/dhcpcd.conf. Then reboot your Raspberry Pi.

03 Add the Enviro board
Pimoroni’s Enviro board (or the earlier Enviro pHAT, which is still available from some

online retailers) enables you to send back environmental data from the camera. With your
Raspberry Pi powered off, mount the board on its GPIO header.

Now power up Raspberry Pi and install the Python library and dependencies using the
following Terminal commands:

git clone https://github.com/pimoroni/enviroplus-python
cd enviroplus-python
sudo ./install.sh
sudo pip3 install smbus2

 You’ll still have to get pretty close to the water yourself

http://magpi.cc/accesspoint

79Chapter 13 Take your camera underwater

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

The Enviro board’s library comes with some example programs; you should run some of these
to test that everything is working correctly.

Note: If you are not using an Enviro board, you will need to comment out some of the related
code in the main ch13listing1.py script. If using the Enviro pHAT instead, use the alternative
ch13listing2.py script in the GitHub repository (magpi.cc/cameragit13).

04 Fitting everything into your container
To cut down on reflections and obtain the best possible images, the camera should be

as close to the transparent side of your container as possible. The ZeroView from the Pi Hut
is a clever mounting plate that uses suction cups and will also hold your Raspberry Pi Zero
securely. Alternatively, you could make a mount out of cardboard and glue this to the inside of
the container. Velcro tape can be a good solution for power sources (which normally need to
be removable for recharging).

05 Add some code, HTML and CSS
Clone the project’s GitHub repository onto Raspberry Pi. In a Terminal window, enter:

git clone https://github.com/themagpimag/cameraguideCh13

Then use the desktop File Manager to move the Flask folder within cameraCh13 to your
Raspberry Pi’s home directory (or use the mv command in a Terminal window).

 A makeshift handle to lower the waterproof box into the water

http://magpi.cc/cameragit13

80 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

To run the program, enter the following Terminal command:

sudo python3 /home/pi/Flask/ch13listing1.py

To see the generated webpage from another computer, you just have to open a web browser
and enter your Raspberry Pi’s static IP address. Using the on-screen buttons, we can also
switch between recording modes (video or continuous still frames) or take photos on demand
– by selecting QuickSnap and then clicking the Take button. This control of the camera is
achieved via the picamera library, which is used for the three main functions – timelapse,
video, and snapstart – defined in our Python script. You could enhance the project by adding
additional exposure and shutter speed controls to your interface if you want.

Note: To see the latest image taken, press an on-screen button or reload the webpage.

06 Set the code to run at boot
Naturally, we’ll want the code to run automatically whenever the Raspberry Pi boots

up. To do so, add this line to your /etc/rc.local file, immediately above the exit 0 line:

sudo python3 /home/pi/Flask/ch13listing1.py &

It is also a good idea to configure your
Raspberry Pi to only boot to the command
line rather than the desktop, as this uses a
little less power and prolongs battery life.
The easiest way to change this is to open
Preferences > Raspberry Pi Configuration
from the desktop; in the default System
tab, change Boot to the ‘To CLI’ option.
Alternatively, open a Terminal window and
enter sudo raspi-config to open the
Configuration Tool; select Boot Options
> Desktop / CLI and option B2 – Console
Autologin Text console.

Now go and find somewhere wet! You
might want to run a few tests in the bath
before venturing further afield.

 The web interface shows
environmental information and
lets you control the camera

81Chapter 13 Take your camera underwater

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

from flask import Flask, render_template,
request, redirect, url_for
import time, os, shutil
from picamera import PiCamera
from datetime import datetime, timedelta
from threading import Thread
from ltr559 import LTR559
from bme280 import BME280
from smbus2 import SMBus

ltr559 = LTR559()
bus = SMBus(1)
bme280 = BME280(i2c_dev=bus)

app = Flask(__name__)
app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 1

def timelapse(): # continuous shooting
 cam = PiCamera()
 cam.resolution = (1640,922)
 for filename in cam.capture_continuous('img{timestamp:%Y%m%d-
%H%M%S}.jpg'):
 print('snap taken')
 print(btn1,btn2)
 shutil.copyfile(filename,'/home/pi/Flask/static/latest.
jpg')
 if btn1 != 's':
 break
 cam.close()
 print('timelapse thread stopped')

def video(): # record a video
 cam = PiCamera()
 t='{:%Y%m%d-%H%M%S}'.format(datetime.now())
 cam.resolution = (1920,1080)
 cam.start_recording('vid'+t+'.h264')
 while btn1 == 'v':
 print(btn1,btn2)
 pass
 cam.stop_recording()
 cam.close()
 print('video thread stopped')

ch13listing1.py / Python 3 DOWNLOAD
magpi.cc/cameragit13

http://magpi.cc/cameragit13

82 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

def snapstart(): # take pictures on demand
 cam = PiCamera()
 cam.resolution = (1640,922)
 print('entered snapshot mode')
 global btn2
 while btn1 == 'q':
 time.sleep(0.1)
 if btn2 == 'a':
 print('taken snap: btn2 =' + btn2)
 t='{:%Y%m%d-%H%M%S}'.format(datetime.now())
 filename = 'snap'+t+'.jpg'
 cam.capture(filename)
 shutil.copyfile(filename,'/home/pi/Flask/static/
latest.jpg')
 btn2 = 'o'
 print('btn2 =' + btn2)

 cam.close()
 print('exiting snaphot mode')

we are able to make two different requests on our webpage
GET = we just type in the url
POST = some sort of form submission like a button

@app.route('/', methods = ['POST','GET'])
def hello_world():

 status = 'off'
 global btn1
 btn1 = 'o'
 global btn2
 btn2 = 'o'
 message = 'All good '

 # if we make a post request on the webpage aka press button
then do stuff
 if request.method == 'POST':

 # if we press the turn on button
 if request.form['submit'] == 'Video':

ch13listing1.py (cont.) / Python 3

83Chapter 13 Take your camera underwater

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

 print('BP: Recording video')
 status = 'video'
 btn1 = 'v'
 t2 = Thread(target=video)
 t2.start()
 message = 'All good'
 elif request.form['submit'] == 'Video Off':
 print('BP: Video off')
 status = 'Idle'
 btn1 = 'o'
 message = 'All good'
 elif request.form['submit'] == 'Stills':
 print('BP: Recording stills')
 btn1 = 's'
 t1 = Thread(target=timelapse)
 t1.start()
 status = 'stills'
 message = 'All good'
 elif request.form['submit'] == 'Stills Off':
 print('BP: stills off')
 status = 'Idle'
 btn1 = 'o'
 message = 'All good'
 elif request.form['submit'] == 'QuickSnap':
 print('BP: QuickSnap')
 status = 'Ready to snap'
 btn1 = 'q'
 t3 = Thread(target=snapstart)
 t3.start()
 message = 'All good'
 elif request.form['submit'] == 'QuickSnap Off':
 print('BP:QuickSnap off')
 status = 'Idle'
 btn1 = 'o'
 message = 'All good'
 elif request.form['submit'] == 'Take':
 print('BP:Take')
 status = 'Snapshot mode'
 btn1 = 'q'
 btn2 = 'a'
 message = 'All good'
 elif request.form['submit'] == '_Take_':

ch13listing1.py (cont.) / Python 3

84 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

 print('BP:Take error')
 status = 'Error'
 message = 'Enable QuickSnap first'
 btn1 = 'o'
 else:
 pass

 temp = round(bme280.get_temperature(),2) # temperature
 press = int(bme280.get_pressure()) # pressure
 lux = ltr559.get_lux() # light levels
 df = os.statvfs('/') # check if we're running out of disk
space
 df_size = df.f_frsize * df.f_blocks
 df_avail = df.f_frsize * df.f_bfree
 df_pc = round(100 -(100 * df_avail/df_size),1)
 print(btn1, btn2)

 # the default page to display will be our template with our
template variables
 return render_template('index2.html', message= message,
status=status, temp=temp, press=press, lux=lux, df_pc=df_pc,
btn1 = btn1)

if __name__ == "__main__":

 # let's launch our webpage!
 # do 0.0.0.0 so that we can log into this webpage
 # using another computer on the same network later
 # specify port 80 rather than default 5000
 app.run(host='0.0.0.0',port=80,debug=True)

ch13listing1.py (cont.) / Python 3

85Chapter 13 Take your camera underwater

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

86 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Chapter 14

W hile it’s simple enough to set up a
Camera Module in a weatherproof
box to observe wildlife in your

garden, for this project we’ll be installing a
camera inside a bird box. Since it’ll be dark
inside, and we can’t use a standard light
source, we’ll need to use a Pi NoIR Camera
Module. ‘NoIR’ stands for ‘no infrared’, as
it omits the IR filter found in the standard
camera. This enables you to use an infrared
light source to see in the dark. Note that we’ll
need to adjust the fixed focus of the camera by
unscrewing the lens.

01 Set up the Pi NoIR
We can’t use a standard light source inside the bird box, since this could attract

insects and predators, and so would deter any birds from nesting there. So we need to use a
Pi NoIR Camera Module (Figure 1). Apart form the omission of an infrared filter, this works
exactly the same way as the standard camera, so you can connect it up to your Raspberry Pi
as in Chapter 1 and use all the same Terminal commands. So, for instance, you can obtain a
video preview with:

raspivid -t 0

You’ll notice that everything looks a little strange; this is because you’re looking at a
combination of visible light and infrared light. To test it out in darkness, turn the lights off, aim

Install a bird
box camera
Observe nesting birds without disturbing them

 YOU’LL NEED
• Pi NoIR Camera Module

• Focus adjustment tool

• Bird box

• IR LED

• Female-to-female jumper wires

• Power source

• Ethernet cable (optional)

87Chapter 14 Install a bird box camera

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

a TV remote control at your face and press
the buttons to produce an IR light source.
You should see your face illuminated in the
darkness. The image will look black and white
(greyscale), because there are no wavelengths
of light from the visible spectrum being
detected. However, a black and white image
is good enough to allow you to watch what’s
happening inside a bird box, and it doesn’t
disturb or interfere with the birds in any way. Press CTRL+C to exit the preview.

02 Wire up an IR LED
We’ll need a suitable infrared light source in the bird box. In this example we’re using

a single IR LED, but alternatives include small IR lamps and the IR version of the LISIPAROI
(lisiparoi.com). Our 890 nm IR LED is an identical component to the ones found inside TV
remote controls; the only difference is that we’re going to keep it on constantly when shooting
video or stills in the bird box.

As usual, you should turn off your Raspberry Pi before connecting anything up. If you’ve
wired up an LED to Raspberry Pi’s GPIO pins before, then please note that this LED needs to
be done slightly differently. Since an infrared LED requires more current than the GPIO pins
can provide, it needs to be connected directly to the 5V supply of Raspberry Pi with a 220 Ω
resistor inline; without the resistor the current will be too high, and the LED will burn out after
about ten seconds.

 HQ CAMERA
If you want to use an HQ Camera for this

project, you’ll need to remove its IR filter so

it can capture infrared images in the dark.

See the leaflet supplied with the camera

for more details, but note that this is an

irreversible process.

 Figure 1 The
Pi NoIR Camera
Module can see
in the dark with
infrared lighting

http://lisiparoi.com

88 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Figure 2 shows how the LED should be wired up. You’ll notice that the LED has two legs, one
slightly longer than the other. The longer of the two is called the anode and the shorter is the
cathode. The LED needs power to flow into the anode and out of the cathode; if you get the
polarity wrong then nothing will happen.

Use a couple of female-to-female jumper wires to make the following connections. Connect
the anode (long leg) to 5 V, which is the first pin on the outside row on the GPIO. Connect the
cathode (short leg) to the 220 Ω resistor. Connect the other side of the resistor to ground
(GND), which is the third pin in on the outside row of the GPIO.

03 Test the LED
With everything wired up correctly, turn your Raspberry Pi back on. You’ll notice that

the infrared LED doesn’t appear to be working, but in fact it is. Your human eyes can’t see it,
but the Pi NoIR camera can. Turn on the camera preview again with raspivid -t 0. Hold the
LED in front of the camera and you should see it lit. If not, then you may have mixed up the
polarity of the anode and cathode. Double-check your wiring against the Figure 2 diagram.
Try turning out the lights and aiming the LED at yourself; don’t look directly into it, however, as
infrared light can still cause harm to your eyes. You’ll see from the Pi NoIR camera preview
that it will illuminate you quite well. Press CTRL+C when you want to exit.

04 Adjust focus
By default, the Pi NoIR Camera Module has a fixed focal length of 50 cm and depth

of field of 50 cm to infinity. This means that objects will only appear in focus if they’re at least
50 cm away from the lens of the camera. The Gardman box we’re using in this example has an
interior height of 18 cm, so we’ll definitely need to shorten the focal length.

The 222 Ω resistor limits the

current flowing through the LED

The longest leg of the IR LED is

the anode – connect it to a 5 V pin

 Figure 2

89Chapter 14 Install a bird box camera

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Like the standard Camera Module,
the Pi NoIR has a lens that can rotate to
adjust the focus. If your camera came
supplied with a focus adjustment tool (a
little plastic wheel), you can use this to turn
the lens, removing three blobs of silicone
in the process. If you don’t have the tool,
you could always 3D-print one; there are
numerous design available on Thingiverse,
e.g. thingiverse.com/thing:2533691.
Alternatively, you could always use a scalpel
to carefully remove the silicone blobs and
then use tweezers to rotate the lens – see
magpi.cc/adjustfocus for more details.

Carefully rotate it anticlockwise a few times – be careful not to rotate the lens too far,
otherwise it will pop out, and it can be a bit tricky to get it back in and on the thread. If this
does happen, just put it back in gently and rotate clockwise until it catches.

Now reconnect the camera to Raspberry Pi. Place an object – such as a watch or business
card – in the bottom of the bird box, then remove its roof (remove the screw), hold the camera
at the approximate height of the roof, and look at the camera preview. You may wish to put
something under the object at this point to simulate the height of a nest, to make doubly sure
that the birds will be in focus. Remember that once birds move in, you can’t come back and
adjust the camera if the focus is wrong.

05 Install the camera
Place your finger on the roof, approximately above the centre of the main body of

the bird box. Lift up the roof and place your thumb directly below your finger, so that you’re
pinching the lid as shown in Figure 3. Your thumb is now where the camera needs to be.
Take a pen and mark this spot with a cross. Cut out a rectangle of cardboard approximately
4 cm × 2 cm (1.5" × 0.75") and fold it in half
lengthways. Use some tape to secure it to
the underside of the roof so that it’s a few
millimetres below the cross. This is going to
be used to compensate for the angle of the
roof, so that the camera points directly into
the middle of the bird box.

Next, take the Pi NoIR and slide the
flexible cable down between the roof hinge
and the back wall of the box – Figure 4. Do
this with the tin connectors facing away
from the back wall. If you wish, you can

 Figure 3 Pinch the lid and then use a pen
to mark a cross where your thumb is

 Figure 4 Slide the camera cable between
the roof hinge and the back wall of the box

http://thingiverse.com/thing
http://magpi.cc/adjustfocus

90 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

remove the two middle staples holding the
hinge in place; this will make the flex exit
the bird box more neatly.

Take some tape and put it across the
top of the Pi NoIR board – do not cover the
camera lens! Secure the camera in place
so that the central lens is directly over the
cross that you drew earlier. The camera
should sit at an angle – Figure 5. Close the
lid and inspect the camera angle from the
side: it needs to point directly at the centre
of the base. If it doesn’t look right, then go
back and adjust it until you’re happy. An

alternative to taping it in place would be to use the four mounting holes to screw it to the lid
via a wedge of wood instead of the cardboard.

06 Add the LED
Secure the infrared LED to the underside of the roof. Don’t attach it too close to the

camera, or you’ll see a lot of glare on the video. The LED can go anywhere, but it can help to
bend its legs by 90 degrees, as shown in Figure 6, and secure it to the roof that way. You may
also wish to blank off the end of the LED with correction fluid or by filing it down with a nail file.
This will prevent any spotlight effect on the video and give a more diffuse light.

07 Test it again
Now reconnect your Raspberry Pi and test the focus once again. We recommend

connecting the camera flex coming from the back of the bird box to Raspberry Pi first. Then
connect the LED and resistor, followed by the screen, keyboard, and finally the power supply.
When testing this setup, it can be helpful to rest Raspberry Pi upside-down on the roof of the bird
box, but do whatever works best for you.

Boot up as usual and then start the video
preview with raspivid -t 0. With the
roof of the bird box closed, you should be
able to see the inside in black and white.
This shows that the infrared illumination is
working; you should even be able to cover
the hole and still see the inside. It will look
similar to Figure 7, but will be slightly more
zoomed in. This is because this image was
taken using the raspistill command and
not raspivid. If you can’t see anything
at all, then it’s likely the LED is not wired

 Figure 5 When in place, the camera should sit
at an angle to compensate for the roof slope

 Figure 6 The IR LED is taped to the underside
of the roof, not too close to the camera

91Chapter 14 Install a bird box camera

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

up correctly: double-check the wiring and the
polarity of the anode and cathode.

It’s now helpful to put an object with some
black-on-white text into the bird box to verify
the focus, such as a watch or business card.
Ensure that the text is in focus and readable;
adjust the camera focus again as necessary
before continuing. Remember to compensate
for the nest height. Press CTRL+C when you
want to stop the camera preview.

08 Weatherproof it
While you can attach your Raspberry Pi directly to the outside of the bird box, an

alternative is to use a longer camera cable. Either way, you’ll need to put Raspberry Pi inside a
weatherproof box. Preventing water getting into the bird box should also be a priority. The roof
could be sealed using silicone sealant, which is often used to seal the edges of windows and
bathroom sinks. Choosing a site which is beneath the overhang of an existing roof will help a
lot, so the bird box will not be rained on directly.

Lastly, you need to consider how you will get power and an internet connection to the bird
box? You could use a wireless USB dongle, or the built-in wireless LAN of a Raspberry Pi 3 /
3B+ / 4 / Zero W, but Ethernet is more reliable for streaming video, especially in built-up areas
that have a lot of wireless traffic.

09 Obtain images
With everything installed, connected, and powered up, you can SSH in to your

Raspberry Pi from another computer (see magpi.cc/ssh for details) to control it remotely.
You are then able to enter standard Terminal commands such as raspistill and raspivid

to obtain stills (including time-lapses – see
Chapter 3) and video footage. You could
also write one or more Python scripts
using the picamera library.

Note that you can’t view the live camera
preview via SSH. However, you are able to
live-stream video from the bird box. This
could be achieved using a client-server
setup, as described in Chapter 15, to pipe
the output to a video player on the client
computer. Alternatively, you could make
use of an internet video service offering
live streaming, such as YouTube (see
magpi.cc/birdboxyt for details).

 Figure 7 Make sure that the test object is
raised up slightly and the text is in focus

 TURN OFF RED LED
If you are using an original (Rev 1.3) Pi NoIR

Camera Module, you’ll need to disable its

red LED that lights up whenever the camera

is on. Enter sudo nano /boot/config.txt

and add the following line to the end of the

file: disable_camera_led=1. Save and exit

the file, then reboot.

http://magpi.cc/ssh
http://magpi.cc/birdboxyt

92 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

O ne of the drawbacks of using SSH
or VNC to access your Camera
Module- or HQ Camera-equipped

Raspberry Pi remotely from another
computer is that you can’t (typically) view
the camera preview via these methods. To
get around this, you’ll need to stream live video across the network. While there are various
methods available for doing this, in this chapter we’ll show you how to create a client-server
setup for video streaming using the picamera Python library. We’ll also explore how to send
a stream of stills over the network.

01 Server-side script
Note: If you are using a Linux-based computer for playback of the video stream,

there is an easier method, explained in Step 03.
First, we’ll write a Python server script, ch15listing1.py, for the remote computer that will

read the video stream (which we’ve yet to write to the code to create) and pipe it to a media
player. Note that while you can use a Raspberry Pi 4 for the task of remote playback, earlier
Raspberry Pi models won't work in this role since the CPU is not powerful enough to do the
video decoding (and neither VLC nor MPlayer supports doing this using the GPU). Therefore
you may need to run this script on a faster machine, although even an Atom-powered
netbook should be quick enough for the task at non-HD resolutions.

After importing the libraries required at the top of the script, we start listening for
connections on 0.0.0.0:8000, i.e. all IP addresses on the local network. We then accept a
single connection and make a file-like object out of it.

In the try: block, we run a media player from the command line to view it – if you want to
use MPlayer instead of VLC, add a # to the start of the cmdline = ['vlc… line to comment
it out, and remove the # from the cmdline = ['mplayer… line.

Live-stream
video and stills
Stream video and regular stills to a remote computer

Chapter 15

 YOU’LL NEED

• Camera Module / HQ Camera

• Remote computer

93Chapter 15 Live-stream video and stills

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

In the while True: loop, we repeatedly read 1kB of data from the connection and write it to
the selected media player’s stdin (standard input) to display it.

Note: If you run this script on Windows or macOS, you will probably need to provide a
complete path to the VLC or MPlayer executable/app. If you run the script on macOS, and
are using Python installed from MacPorts, please ensure you have also installed VLC or
MPlayer from MacPorts.

02 Client-side script
Now we’ll create a client script, ch15listing2.py, on our Raspberry Pi with the

Camera Module or HQ Camera equipped. This will connect to the network socket of our
server (playback) script to send a video stream to it.

After importing the required libraries at the top, we connect a client socket to
my_server:8000 – you’ll need to change my_server to the host name of your server
(the computer that will playing back the stream). If you are using a Linux PC or Mac, just
type hostname -I in a Terminal window to find it out; in Windows, it’s the Computer Name
in Control Panel > System.

We then create a file-like object from the network socket before triggering the camera
to start recording. In this example we’re using a resolution of 640×480 with a frame rate of
24 fps, but you can adjust these numbers to your requirements. We’ve also set the camera
to record for 60 seconds with camera.wait_recording(60); again, you can change this
number to suit your preference.

 The remote server script reads the video stream and pipes it to a media player, such as VLC

94 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Run the server script, then the client script. You should see the video stream played in
your chosen media player. You may notice some latency; this is normal and due to buffering
by the media player.

03 Server-side script
As mentioned, if you’re using a Linux PC for playback of the video stream, there is a

much quicker and easier way to achieve what we’ve done in Steps 01 and 02. On the server
(playback) machine, enter the following command into a Terminal window:

nc -l 8000 | vlc --demux h264 -

Then, on the client – your Raspberry Pi with the Camera Module or HQ Camera – issue the
following command:

raspivid -w 640 -h 480 -t 60000 -o - | nc my_server 8000

…replacing my_server with the server’s host name.

04 Switch it around
An alternative method is to reverse the direction so that Raspberry Pi acts as a

server. We can then get it to wait for a connection from the client before streaming video.
Enter the ch15listing3.py example on Raspberry Pi and run it.

 An alternative is to set Raspberry Pi as the server and open the
network source in VLC or another media player

95Chapter 15 Live-stream video and stills

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

The big advantage of this method is that you then only need to use a single command to
initiate playback on the remote computer:

vlc tcp/h264://my_pi_address:8000/

…replacing my_pi_address with your Raspberry Pi’s IP address (again, discovered using
hostname -I). Or, in VLC running on the desktop, go to File > Open Network and enter the
same address: tcp/h264://my_pi_address:8000/

05 Stream stills
Now let’s stream camera stills taken at regular intervals in a variation on a standard

time-lapse setup. Entered on a remote computer (which could be another Raspberry Pi), the
server script, ch15listing4.py, starts a socket to listen for a connection from your Raspberry
Pi with the camera. At the top, we import the required libraries; here we’re using PIL (you
can install it using sudo pip install pillow) to read JPEG files, but alternatives include
OpenCV and GraphicsMagick. The script then checks the image length and, if it is not zero,
constructs a stream to hold the image data and then reads it from the connection. The
image.show() command will open each image in the default image viewer: it can create a
lot of windows if left going for a while! Now to create a client script…

06 Stills client script
On your Raspberry Pi with the camera, the client script, ch15listing5.py, sends a

continual stream of images to the server. We’ll use a very simple protocol for communication:
first, the length of the image will be sent as a 32-bit integer (in little-endian format), then this
will be followed by the bytes of image data. If the length is 0, this indicates that the connection
should be closed as no more images will be forthcoming. As before, for connecting the socket,
you should replace my_server in the script with the host name of the remote computer. We then
make a file-like object out of the connection. Before constructing the stream, we start a preview
to let the camera warm up for two seconds. Further down, the line if time.time() - start
> 30: limits the streaming period to 30
seconds, though you can alter this.

Note that the server script should be run
first to ensure there’s a listening socket
ready to accept a connection from the
client script.

Taking it further, you may want to add a
way of closing each image window before
the next is generated. Also, rather than
simply showing the images, you could use
the numerous functions of PIL to process
them (see effbot.org/imagingbook).

 Multiple stills are streamed to the remote
computer and displayed

http://effbot.org/imagingbook

96 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

import socket
import subprocess
Start a socket listening for connections on 0.0.0.0:8000
(0.0.0.0 means all interfaces)
server_socket = socket.socket()
server_socket.bind(('0.0.0.0', 8000))
server_socket.listen(0)
Accept a single connection and make a file-like object out of it
connection = server_socket.accept()[0].makefile('rb')
try:
 # Run a viewer with an appropriate command line. Uncomment
the mplayer
 # version if you would prefer to use mplayer instead of VLC
 cmdline = ['vlc', '--demux', 'h264', '-']
 #cmdline = ['mplayer', '-fps', '25', '-cache', '1024', '-']
 player = subprocess.Popen(cmdline, stdin=subprocess.PIPE)
 while True:
 # Repeatedly read 1k of data from the connection
 # and write it to the media player's stdin
 data = connection.read(1024)
 if not data:
 break
 player.stdin.write(data)
finally:
 connection.close()
 server_socket.close()
 player.terminate()

ch15listing1.py / Python 3

import socket
import time
import picamera

Connect a client socket to my_server:8000
(change my_server to the hostname of your server)
client_socket = socket.socket()
client_socket.connect(('my_server', 8000))

ch15listing2.py / Python 3

97Chapter 15 Live-stream video and stills

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Make a file-like object out of the
connection
connection = client_socket.makefile('wb')
try:
 camera = picamera.PiCamera()
 camera.resolution = (640, 480)
 camera.framerate = 24
 # Start a preview and let the camera warm up
 camera.start_preview()
 time.sleep(2)
 # Start recording, sending the output to the connection for 60
 # seconds, then stop
 camera.start_recording(connection, format='h264')
 camera.wait_recording(60)
 camera.stop_recording()
finally:
 connection.close()
 client_socket.close()

ch15listing2.py (cont.) / Python 3

import socket
import time
import picamera

camera = picamera.PiCamera()
camera.resolution = (640, 480)
camera.framerate = 24

server_socket = socket.socket()
server_socket.bind(('0.0.0.0', 8000))
server_socket.listen(0)

Accept a single connection and make a file-like
object out of it
connection = server_socket.accept()[0].makefile('wb')
try:

ch15listing3.py / Python 3

 DOWNLOAD
magpi.cc/cameragit15

http://magpi.cc/cameragit15

98 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

import io
import socket
import struct
from time import sleep
from PIL import Image

Start a socket listening for connections on 0.0.0.0:8000
(0.0.0.0 means all interfaces)
server_socket = socket.socket()
server_socket.bind(('0.0.0.0', 8000))
server_socket.listen(0)

Accept a single connection and make a file-like object out of it
connection = server_socket.accept()[0].makefile('rb')
try:
 while True:
 # Read the length of the image as a 32-bit unsigned int.
 # If the length is zero, quit the loop
 image_len = struct.unpack('<L', connection.read(struct.
calcsize('<L')))[0]
 if not image_len:
 break
 # Construct a stream to hold the image data and read the image
 # data from the connection
 image_stream = io.BytesIO()
 image_stream.write(connection.read(image_len))
 # Rewind the stream, open it as an image with PIL
 # and show it in the default image viewer
 image_stream.seek(0)

ch15listing4.py / Python 3

 camera.start_recording(connection, format='h264')
 camera.wait_recording(60)
 camera.stop_recording()
finally:
 connection.close()
 server_socket.close()

ch15listing3.py (cont.) / Python 3

99Chapter 15 Live-stream video and stills

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

 image = Image.open(image_stream)
 image.show()
finally:
 connection.close()
 server_socket.close()

ch15listing4.py (cont.) / Python 3

import io
import socket
import struct
import time
import picamera

Connect a client socket to my_server:8000
(change my_server to the hostname of your server)

client_socket = socket.socket()
client_socket.connect(('my_server', 8000))

Make a file-like object out of the connection

connection = client_socket.makefile('wb')
try:
 camera = picamera.PiCamera()
 camera.resolution = (640, 480)
 # Start a preview and let the camera warm up for
 camera.start_preview()
 time.sleep(2)

 # Note the start time and construct a stream to
 # hold image data temporarily (we could write it
 # directly to connection but in this case we want
 # to find out the size of each capture first to keep
 # our protocol simple)

 start = time.time()
 stream = io.BytesIO()

ch15listing5.py / Python 3

100 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

 for foo in camera.capture_continuous(stream, 'jpeg'):

 # Write the length of the capture to the stream
 # and flush to ensure it actually gets sent

 connection.write(struct.pack('<L', stream.tell()))
 connection.flush()

 # Rewind the stream and send the image data over the wire

 stream.seek(0)
 connection.write(stream.read())

 # If we've been capturing for more than 30 seconds, quit

 if time.time() - start > 30:
 break

 # Reset the stream for the next capture

 stream.seek(0)
 stream.truncate()

 # Write a length of zero to the stream to signal we're done

 connection.write(struct.pack('<L', 0))
finally:
 connection.close()
 client_socket.close()

ch15listing5.py (cont.) / Python 3

101Chapter 15 Live-stream video and stills

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

102 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

T he specialist motionEyeOS distro
turns your Raspberry Pi and
Camera Module or HQ Camera

into a fully fledged security camera that
can stream a live view, detect motion, and
capture video and stills. In this chapter we’ll
show you how to install it, get started using
it, and even send custom push notifications
to your phone when motion is detected!

01 Install motionEyeOS
motionEyeOS is a Linux distribution that turns a single-board computer into a video

surveillance system. To see the list of supported devices and download the relevant distro
image, go to magpi.cc/motioneyeoslist. Note that there are four different versions available
for Raspberry Pi, so make sure you download the correct one for your model.

With the image downloaded, you can write it to a microSD card in a similar fashion to
Raspbian, by using the Raspberry Pi Imager tool (magpi.cc/imager) for example. However,
motionEyeOS’s creator provides a write utility for Linux and macOS. The advantage of using
this is that you can preconfigure the wireless network connection so that you don’t have to
connect Raspberry Pi to your router via Ethernet at first. This is particularly useful if you are
using a Raspberry Pi Zero, which lacks an Ethernet port. To download the utility and make it
executable, enter the following commands in a Terminal window:

curl https://raw.githubusercontent.com/ccrisan/motioneyeos/
master/writeimage.sh
chmod 775 writeimage.sh

Set up a
security camera
Protect your home using motionEyeOS

Chapter 16

 YOU’LL NEED

• Camera Module / HQ Camera

• motionEyeOS

• Pushover app

• Remote computer

http://magpi.cc/motioneyeoslist
http://magpi.cc/imager

103Chapter 16 Set up a security camera

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

To write to the microSD card and preconfigure the wireless connection, use:

./writeimage.sh -d /dev/yoursdcard -i "/path/to/motioneyeos.img"
-n 'yournet:yourkey'

…replacing the generic elements with your own details.

02 Alternative wireless method
Another way of preconfiguring wireless connectivity, if you’re using a standard card

writing method, is to create a file called wpa_supplicant.conf containing these lines (with
your router’s SSID and password):

update_config=1
ctrl_interface=/var/run/wpa_supplicant

network={
 scan_ssid=1
 ssid="your_network"
 psk="your_password"
}

You will need to turn the file into an executable with chmod +x wpa_supplicant.conf
before moving it to the boot partition of your microSD card (alongside start.elf etc.). Note:
From version 20190119, WiFi configuration will be read every time the device boots.

 Find the IP address of the motionEyeOS Pi by visiting your router’s homepage

104 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

03 Remote access
Insert the microSD card into your Raspberry Pi and boot it. There is no need to

attach it to a monitor as it won’t show much and it’s intended to be run headless. Assuming
you’ve preconfigured the wireless connection, it should connect to the router after a couple
of minutes. If you have any problems, check the wireless details you entered; if your router
syncs 2.4GHz and 5GHz on the same SSID, you may need to split this into separate SSIDs to
get a connection. If you’re still having trouble, you can connect to the router via an Ethernet
cable and set up a wireless connection from the remote web interface later.

Either way, to find Raspberry Pi’s IP address, just visit your router’s homepage (e.g.
192.168.1.254) and view the list of attached devices; your Raspberry Pi will appear as
meye- followed by a hex number. Enter the IP address for it in a web browser on a remote
computer. You will be presented with a login screen: just enter the default admin username
without a password. You can add a password later, as well as a standard user.

04 Camera features
Once you’re logged in, you will be able to see the live view from the camera, which

you can also expand. Open the options menu on the left (the icon is three horizontal parallel
lines) to access numerous options; change Layout Columns to 1 to enlarge the standard
camera view.

 Intruder alert! Any change in the camera view will be detected, triggering stills or video capture

105Chapter 16 Set up a security camera

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Click the ‘switch user’ icon near the top left and enter the username ‘admin’ with no
password to reveal a host of extra options. These include camera settings such as video
resolution and rotation. You can also adjust motion detection settings and options for
capturing stills and movies, which can be viewed via the icons shown on the camera view
after you click on it. The Motion Notifications panel enables you to send yourself an email
whenever motion is detected, or call a web hook, or run a command. This last option is what
we’ll be using for our custom notifications using the Pushover service.

05 Create Pushover app
Pushover has a great, easy-to-use API. You’ll need a Pushover account – you can

create one at pushover.net. Note: after a seven-day free trial, you will need to pay a one-off
fee of $5 per platform (iOS, Android, Desktop) to continue receiving notifications for it from
the Pushover service.

Once you’ve registered, go to the pushover.net/apps page and click on ‘Create a New
Application / API Token’. Give your app a name – something like RaspiMotion. Give your app
a quick description (e.g. ‘Push notifications sent by my Raspberry Pi’) and, if you are feeling
creative, upload a custom icon which will show in your Pushover client app whenever a
notification is sent. Finally, tick the Terms of Service checkbox and click ‘Create Application’

Once you have created your application, you should have access to an API token/key. This
is a unique combination of numbers and letters: keep it a secret! You’ll also need your user
key, which is shown once you log into Pushover’s website. Now you have an app and your
API and user keys. The next thing is to write a Python script to tell your Raspberry Pi to work
its magic once the script is called upon by motionEyeOS.

06 Write Python script
You’ll need to SSH into your Raspberry Pi from a Terminal window on a remote

computer (or PuTTY on Windows) to do this, using ssh admin@IP-address. The default
user is admin, with no password. Our script needs to live in the data folder, so go there and
create ch16listing1.py using nano:

cd /data
nano ch16listing1.py

Once here, you’ll need to type in the code listing, while also including your API token and
user key where required. As with any script, we need to make sure it can be executed,
otherwise it’s nothing more than a fancy collection of text! From the command line, make
sure you’re in the data folder and then type:

chmod +x ch16listing1.py

http://pushover.net
http://pushover.net/apps

106 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Or, if you are using WinSCP, select the ch16listing1.py file in the data folder, then press F9. In
the window that appears, change the permissions to 0755 and then click ‘OK’ to confirm.

07 Trigger the script
Now that we have our script, we need to tell motionEyeOS to use it when it detects

motion. To do this, log in, go to the Motion Notifications menu and turn on the ‘Run A
Command’ option. You then need to specify which command to run, which will be the
Python script you just created – this is /data/ch16listing1.py. Then click on Apply to
confirm the changes.

To test it out, you’ll need the Pushover app installed on your smartphone or tablet. Wave
your hand in front of your camera (or you can do a dance if you’re feeling energetic!) and
then shortly afterwards you should receive a notification via Pushover, warning you that
motion has been detected. Feel free to experiment with the script to customise the message
displayed and sound played in Pushover.

 In the Motion Notifications menu, set Run A Command to the path of your script

107Chapter 16 Set up a security camera

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

import httplib, urllib

conn = httplib.HTTPSConnection("api.pushover.
net:443")
conn.request("POST", "/1/messages.json",
 urllib.urlencode({
 "token": "APP_TOKEN",
Insert app token here
 "user": "USER_TOKEN",
Insert user token here
 "html": "1",
1 for HTML, 0 to disable
 "title": "Motion Detected!",
Title of the message
 "message": "Front Door camera!",
Content of the message
 "url": "http://IP.ADD.RE.SS",
Link to be included in message
 "url_title": "View live stream",
Text for the link
 "sound": "siren",
Define the sound played
 }), { "Content-type": "application/x-www-form-urlencoded" })
conn.getresponse()

ch16listing1.py / Python 3 DOWNLOAD
magpi.cc/cameragit16

http://magpi.cc/cameragit16

108 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Chapter 17

T he first thing to note about the Raspberry Pi HQ Camera and Camera Module is that
they both feature a rolling shutter. So, when capturing an image, the camera reads
out the pixels from the sensor one row at a time. Unlike the global shutter on a DSLR

camera, it also lacks a physical shutter that covers the sensor when not in use.
In addition, the HQ Camera or Camera Module acts more like a video camera than a

stills camera, as it is rarely idle. Once initialised, it is constantly streaming rows of frames
down the ribbon cable to Raspberry Pi for processing. Numerous background tasks include
automatic gain control, exposure time, and white balance. That’s why it’s best to give it a
couple of seconds or more once activated, to adjust the exposure levels and gains before
capturing an image.

For more details on how the camera hardware works, see the picamera documentation
at magpi.cc/cameradoc.

Quick reference

01. Camera hardware

To help you get to grips with your HQ Camera or
Camera Module, here’s a handy reference guide to the
hardware, commands, and picamera Python library

Find out all about the HQ Camera and Camera Module hardware

 FIXED FOCUS
Unlike the HQ Camera, the Camera Module has a fixed focal length of 50 cm and depth of field of

50 cm to infinity. This means that objects will only appear in focus if they’re at least 50 cm away from

the lens of the camera. However, it is possible to alter this by using a focus adjustment tool – or fine

tweezers – to unscrew the lens slightly in order to shorten the focal length. See Chapter 14 Step 04

for more details.

http://magpi.cc/cameradoc

109Chapter 17 Quick reference

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

High Quality Camera
Compatible with any C- or CS-mount lens, the HQ Camera has the following key specs…

Camera Module versions
The original Camera Module features a 5MP Omnivision sensor, while the later v2 has an 8MP
Sony IMX29. Here are the key specs for both…

High Quality Camera

Sensor Sony IMX477

Sensor resolution 4056 × 3040 pixels (12.33MP)

Image size Diagonal 7.857 mm (Type 1/2.3)

Pixel size 1.55 × 1.55 µm

Image modes

4056 × 3040
2028 × 1520
2028 × 1080
1012 × 760

Camera Module v1 Camera Module v2

Sensor OmniVision OV5647 Sony IMX219

Sensor resolution 2592 × 1944 pixels (5MP) 3280 × 2464 pixels (8MP)

Sensor image area 3.76 × 2.74 mm 3.69 × 2.81 mm

Pixel size 1.4 × 1.4 µm 1.12 × 1.12 µm

Optical size 1/4″ 1/4″

Video modes
1920 × 1080, up to 30 fps
1280 × 720, up to 60 fps
640 × 480, up to 90 fps

1920 × 1080, up to 30 fps
1280 × 720, up to 60 fps
640 × 480, up to 90 fps

110 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Sensor input modes
By default, the camera switches automatically between sensor input modes according to
parameters of the raspistill or raspivid command given. However, you can force the
sensor into any of seven discrete modes (four for the HQ Camera), as detailed below, by using
the -md switch (or sensor_mode constructor in picamera).

Note that you’ll still need to specify the resolution and frame rate manually, which should be
within the stated range. Modes with a partial field of view are captured from the centre of the
sensor, as shown in Figure 1 and Figure 2 for Camera Module v1 and v2 respectively.

Mode Resolution
Aspect
Ratio Frame rates Video* Image FoV

Binning/
Scaling

1 2028 × 1080 169:90 0.1-50 fps Partial 2 × 2 binned

2 2028 × 1520 4:3 0.1-50 fps Full 2 × 2 binned

3 4056 × 3040 4:3 0.005-10 fps Full None

4 1012 × 760 4:3 50.1-120 fps Full 4 × 4 scaled

Mode Resolution
Aspect
Ratio Frame rates Video* Image FoV

Binning/
Scaling

1 1920 × 1080 16:9 1-30 fps Partial None

2 2592 × 1944 4:3 1-15 fps Full None

3 2592 × 1944 4:3 0.1666-1 fps Full None

4 1296 × 972 4:3 1-42 fps Full 2 × 2 binned

5 1296 × 730 16:9 1-49 fps Full 2 × 2 binned

6 640 × 480 4:3 42.1-60 fps Full 4 × 4 scaled

7 640 × 480 4:3 60.1-90 fps Full 4 × 4 scaled

HQ Camera

Camera Module v1

111Chapter 17 Quick reference

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Mode Resolution
Aspect
Ratio Frame rates Video* Image FoV

Binning/
Scaling

1 1920 × 1080 16:9 0.1-30 fps Partial None

2 3280 × 2464 4:3 0.1-15 fps Full None

3 3280 × 2464 4:3 0.1-15 fps Full None

4 1640 × 1232 4:3 0.1-40 fps Full 2 × 2 binned

5 1640 × 922 16:9 0.1-40 fps Full 2 × 2 binned

6 1280 × 720 16:9 40-90 fps Partial 2 × 2 binned

7 640 × 480 4:3 40-90 fps Partial 2 × 2 binned

Camera Module v2

Figure 1 Figure 2

* Video recording is limited to a maximum 1080p (1920 × 1080) resolution on all camera models,
regardless of the sensor mode used.

112 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Common options
When using raspistill or raspivid from the command line, you have access to an array
of useful switches to change numerous parameters….

Preview window settings
Preview position/size
--preview or -p (x,y,w,h)
Allows the user to define the size of the preview window (with w and h values) and its location
on the screen (x and y). Note that this will be superimposed over the top of any other
windows/graphics. For instance, to set its top-left corner at (100, 100) and give it dimensions
of 300 × 200, use: -p 100,100,300,200.

Fullscreen preview mode
--fullscreen or -f
Forces the preview window to use the whole screen. Note that the aspect ratio of the incoming
image will be retained, so there may be bars on some edges.

No preview window
--nopreview or -n
Disables the preview window completely. Note that even though the preview is disabled, the
camera will still be producing frames, so it will be using power.

Preview opacity
--opacity or -op
Sets the opacity of the preview window; 0 = invisible, 255 = fully opaque.

Camera control options
Image width
--width or -w
Sets the width of the resulting image. Up to 2592 (Camera Module v1), 3820 (CM v2), 4056
(HQ Camera) – the upper limit for video footage is 1920.

02. Command-line options
A guide to the options available when controlling
the HQ Camera or Camera Module from the command line

113Chapter 17 Quick reference

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Image height
--height or -h
Sets the height of the resulting image. Up to 1944 (Camera Module v1), 2464 (CM v2), or 3040
(HQ Camera) – the upper limit for video footage is 1080.

Image rotation
--rotation or -rot (0 to 359)
Sets the rotation of the preview and saved image. Note that only 0, 90, 180, and 270 degree
rotations are supported (other values are rounded down).

Horizontal flip
--hflip or -hf
Flips the preview and saved image horizontally.

Vertical flip
--vflip or -vf
Flips the preview and saved image vertically. Note: Using -hf and -vf together is equivalent to
a 180° rotation.

Output to file
--output or -o
Specifies the output file name. If this is not specified, no file is saved. If the file name is ‘-’, then
all output is sent to stdout, which is handy when using another application that expects image
or video data through a standard input.

Timeout
--timeout or -t
The program will run for this length of time; the default is five seconds. If output is specified, it
will then take a capture with raspistill. If using raspivid, this is the length of the recording.

Verbose information
--verbose or -v
Outputs verbose debugging information during the run.

Sharpness
--sharpness or -sh (-100 to 100)
Sets the sharpness of the image. 0 is the default.

Contrast
--contrast or -co (-100 to 100)
Sets the contrast of the image. 0 is the default.

114 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Brightness
--brightness or -br (0 to 100)
Sets the brightness of the image. 50 is the default. 0 is black, 100 is white.

Saturation
--saturation or -sa (-100 to 100)
Sets the colour saturation of the image. 0 is the default.

ISO
--ISO or -ISO (100 to 800)
Sets the ISO to be used for captures. In effect, this adjusts the light sensitivity of the sensor.

EV compensation
--ev or -ev (-10 to 10)
Sets the EV compensation of the image. Default is 0.

Exposure mode
--exposure or -ex
Sets the exposure mode to any of: auto, night, nightpreview, backlight, spotlight,
sports, snow, beach, verylong (long exposure), fixedfps (for video only), antishake,
or fireworks. Not all of these settings may be implemented, depending on camera tuning.

Automatic white balance (AWB)
--awb or -awb
Set the AWB mode to any of the following: off, auto, sun, cloud, shade, tungsten,
fluorescent, incandescent, flash, or horizon.

Image effect
--imxfx or -ifx
Sets an effect to be applied to the image. Choose from the following: none, negative,
solarise, posterise, sketch, denoise, emboss, oilpaint, hatch, gpen (graphite sketch
effect), pastel, watercolour, film, blur, saturation (colour saturate the image),
colourswap, washedout, colourpoint, colourbalance, or cartoon.

Colour effect
--colfx or -cfx (U:V)
The supplied U and V parameters (range 0 - 255) are applied to the U and Y (colour) channels
of the image. For example, --colfx 128:128 will result in a monochrome image.

115Chapter 17 Quick reference

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Demo mode
--demo or -d
Cycles through the range of camera options. No capture is taken, and the demo will end at the
end of the timeout period. The time between cycles should be specified in milliseconds.

Metering mode
--metering or -mm
Specifies the metering mode used for the preview and capture. Choose from: average, spot,
backlit, or matrix.

Sensor region of interest
--roi or -roi (x,y,w,h)
Allows the specification of the area of the sensor to be used as the source for the preview and
capture. This is defined as x,y for the top-left corner, and a width and height, with all values in
normalised coordinates (0.0 to 1.0). So, to set a ROI at halfway across and down the sensor,
and a width and height of a quarter of the sensor, use: -roi 0.5,0.5,0.25,0.25.

Shutter speed
--shutter or -ss
Sets the shutter speed to the specified value (in microseconds). The upper limit is around
6000000 µs (6 s) for CM v1; 10000000 µs (10 s) for CM v2; 200000000 µs (200s) for HQ Camera.

Dynamic range compression (DRC)
--drc or -drc
DRC changes images by increasing the range of dark areas, while decreasing the brighter
areas. This can improve the image in low light settings. Choose from: off (default), low,
medium, or high.

Image statistics
--stats or -st
This displays the exposure, analogue and digital gains, and AWB settings used.

AWB gains
--awbgains or -awbg
Sets red and blue gains (as floating point numbers) to be applied when -awb off is set. For
instance, -awbg 1.5,1.2.

Sensor input mode
--mode or -md
Sets a specified sensor mode, disabling the automatic selection. See ‘Camera Hardware’
section for more details.

116 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Annotate flags/text
--annotate or -a
Adds some text and/or metadata to the image. Metadata is indicated using a bitmask
notation, so add them together to show multiple parameters. For example, 12 will show
time(4) and date(8), since 4+8=12. Text may include date/time placeholders by using the ‘%’
character, as used by strftime (magpi.cc/strftimedoc).

Value Meaning Example Output

-a 4 Time 20:09:33

-a 8 Date 02/14/17

-a 12
4+8=12 Show the date(4)
and time(8)

20:09:33 10/28/15

-a 16 Shutter Settings

-a 32 CAF Settings

-a 64 Gain Settings

-a 128 Lens Settings

-a 256 Motion Settings

-a 512 Frame Number

-a 1024 Black Background

-a "ABC" Show some text ABC

-a 4 -a "ABC %Y-%m-%d %X"
Show custom formatted
date/time

ABC 2017-02-17 20:09:33

-a 8 -a "ABC %Y-%m-%d %X"
Show custom formatted
date/time

ABC 2017-02-17 20:09:33

http://magpi.cc/strftimedoc

117Chapter 17 Quick reference

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Extra annotation parameters
--annotateex or -ae
Specifies annotation size, text colour, and background colour. Colours are in hex YUV format.
Size ranges from 6 to 160; default is 32. Asking for an invalid size should give you the default.

Examples:
-ae 32,0xff,0x808000 -a "Text" gives size 32 white text on black background.

-ae 10,0x00,0x8080FF -a "Text" gives size 10 black text on white background.

Photo options
The following options are only available when using the raspistill command (and most of
them also when using raspiyuv).

Time-lapse mode
--timelapse or -tl
The specific value is the time between shots in milliseconds. Note that you should specify
%04d at the point in the file name where you want a frame count number to appear. So, for
example, the following code will produce a capture every two seconds, over a total period of
30 seconds, named image0001.jpg, image0002.jpg and so on, through to image0015.jpg:

-t 30000 -tl 2000 -o image%04d.jpg

If a time-lapse value of 0 is entered, the application will take pictures as fast as possible.
Note that there’s a minimum enforced pause of 30 ms between captures to ensure that
exposure calculations can be made.

 TWO CAMERAS
Since the Raspberry Pi has only one CSI connector for a camera, the use of two cameras is only

possible with a Compute Module (see magpi.cc/cmtwocameras). In this case, the following

commands may be used for stereoscopic images and video.

--camselect or -cs – Selects which camera to use. Use 0 or 1.

--stereo or -3d – Selects stereoscopic mode.

--decimate or -dec – Half width/height of stereo image.

--3dswap or -3dswap – Swaps camera order for stereoscopic.

http://magpi.cc/cmtwocameras

118 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Image quality
--quality or -q
Sets JPEG quality, from 0 to 100.

Raw data
--raw or -r
Adds raw Bayer data to JPEG metadata.

Link latest frame
--latest or -l
Links latest frame to file name specified.

Thumbnail parameters
--thumb or -th (x:y:quality)
Allows specification of the thumbnail image inserted into the JPEG file. If not specified,
defaults are a size of 64×48 at quality 35. If --thumb none is specified, no thumbnail
information will be placed in the file; this reduces the file size slightly.

Encoding for output file
--encoding or -e
Valid options are jpg, bmp, gif, and png. Note that unaccelerated image types (GIF, PNG,
BMP) will take much longer to save than JPG, which is hardware accelerated. Also, the file
name suffix is completely ignored when deciding the encoding of a file.

EXIF tag
--exif or -x (format as ‘key=value’)
Allows the insertion of specific EXIF tags into the JPEG image. You can have up to 32
EXIF tag entries. This is useful for tasks like adding GPS metadata. For example, to set the
longitude to 5 degrees, 10 minutes, 15 seconds, use:

--exif GPS.GPSLongitude=5/1,10/1,15/1

See EXIF documentation for more details on the range of tags. Setting --exif none will
prevent any EXIF information being stored in the file; this reduces the file size slightly.

Full preview mode
--fullpreview or -fp
Runs the preview window using the full-resolution capture mode. Maximum frame rate
in this mode is 15 fps, and the preview will have the same field of view as the capture.
Captures should happen more quickly, as no mode change is required.

119Chapter 17 Quick reference

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Keypress mode
--keypress or -k
The camera is run for the requested time (-t), and a capture can be initiated throughout
that time by pressing the ENTER key. If you are using raspivid, this will pause or resume
shooting video.

Pressing X then ENTER will exit the application before the timeout is reached. If the
timeout is set to 0, the camera will run indefinitely until exited.

With raspivid, the timeout value will be used to signal the end of recording, but is only
checked after each ENTER keypress.

Signal mode
--signal or -s
The camera is run for the requested time (-t), and a capture can be initiated throughout that
time by sending a USR1 signal to the camera process; or, with raspivid, it toggles between
paused and recording. This can be done using the kill command:

kill -USR1 <process id of raspistill or raspivid>

To find the camera process ID, use pgrep raspistill or pgrep raspivid.

Burst mode
--burst or -bm
Enables burst capture mode, to capture a sequence of images (using time-lapse, -tl)
without switching back to preview mode between them. This helps to prevent dropped
frames when using a short delay.

 RASPIYUV OPTIONS
The raspiyuv command uses most of the same options as raspistill. Unsupported ones are

--exif, --encoding, --thumb, --raw, and –quality.

One extra option is --rgb or -rgb. This forces the image to be saved as RGB data with 8 bits per

channel, rather than YUV420.

Note that the image buffers saved in raspiyuv are padded to a horizontal size divisible by 32, so there

may be unused bytes at the end of each line. Buffers are also padded vertically to be divisible by 16,

and in the YUV mode, each plane of Y,U,V is padded in this way.

120 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Video options
The following options are specific to the raspivid command for shooting video.

Bitrate
--bitrate or -b
Sets the bitrate for the video. Use bits per second, so 10Mbits/s would be -b 10000000.
For H.264, 1080p30 a high-quality bitrate would be 15Mbits/s or more. Maximum bitrate is
25Mbits/s (-b 25000000), but much over 17Mbits/s won’t show noticeable improvement
at 1080p30.

Frame rate
--framerate or -fps
Specifies the frames per second to record. This varies depending on the camera mode used.
The maximum is 90 fps, when using a resolution of 640 × 480. See the Camera Hardware
section for more details.

Video stabilisation
--vstab or -vs
Turns on video stabilisation, which attempts to account for camera shake when it is moving.

Preview after encoding
--penc or -e
Displays the preview after compression, to show any artefacts. In normal operation, the
preview will show the camera output prior to being compressed.

Intra refresh period
--intra or -g
Sets the intra refresh period (GoP) rate for the recorded video. H.264 video uses a complete
frame (I-frame) every intra refresh period, from which subsequent frames are based. This
option specifies the number of frames between each I-frame. Larger numbers here will reduce
the size of the resulting video, while smaller numbers make the stream less error-prone.

Quantisation
--qp or -qp
Sets the initial quantisation parameter for the stream. Varies from approximately 10 to 40,
and will greatly affect the quality of the recording. Higher values reduce quality and decrease
file size. Combine this setting with a bitrate of 0 to set a completely variable bitrate.

H.264 profile
--profile or -pf
Sets the H.264 profile to be used for the encoding. Options are: baseline, main, or high.

121Chapter 17 Quick reference

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Insert PPS & SPS headers
--inline or -ih
Forces the stream to include PPS and SPS headers on every I-frame. Needed for certain
streaming cases, e.g. Apple HLS.

Timed pause/record periods
--timed or -td
Allows video capture to be paused and restarted at specified time intervals. Two values
are required: the on time (for recording) and the off time (for paused). The total time of the
recording is defined by the timeout option. For example:

raspivid -o test.h264 -t 25000 -timed 2500,5000

…will record for a period of 25 seconds. The recording will be over a time frame consisting
of 2500 ms (2.5 s) segments with 5000 ms (5 s) gaps, repeating over the 20 s. So the entire
recording will actually be only ten seconds long.

Initial state on startup
--initial or -i
Defines whether the camera will start paused or will immediately start recording (when
using the -td option). Options are record or pause.

Segment stream
--segment or -sg
Rather than creating a single file, the file is split into segments of approximately the number
of milliseconds specified. In order to provide different file names, you should add %04d or
similar at the point in the file name where you want a segment count number to appear.
For example:

--segment 3000 -o video%04d.h264

…will produce video clips of approximately 3000 ms (3 s) long, named video0001.h264,
video0002.h264 etc.

Maximum segment number
--wrap or -wr
When outputting segments, this sets the maximum the segment number can reach before
it’s reset to 1, giving the ability to keep recording segments, but overwriting the oldest one.
So, if set to 4 in the previous segment example, the files produced will be video0001.h264,
video0002.h264, video0003.h264, and video0004.h264. Once video0004.h264 is recorded,
the count will reset to 1, and video0001.h264 will be overwritten.

122 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Initial segment number
--start or -sn
When outputting segments, this is the initial segment number, giving the ability to resume a
previous recording from a given segment. The default value is 1.

Circular buffer
--circular or -c
Runs encoded data through circular buffer until triggered, then saves.

Inline motion vectors
--vectors or -x
Outputs inline motion vectors when used with -o.

Intra refresh type
--irefresh or -if
Sets intra refresh type: cyclic, adaptive, both, or cyclicrows.

Flush buffers
--flush or -fl
Flushes buffers in order to decrease latency.

Timestamps
--save-pts or -pts
Saves timestamps to file for mkvmerge.

Codec
--codec or -cd
Specifies the codec to use: H264 (default) or MJPEG.

H.264 level
--level or -lev
Specifies H.264 level to use for encoding: 4, 4.1, or 4.2.

Raw video
--raw or -r
Outputs raw video to file when used with -o.

Raw format
--raw-format or -rf
Specifies output format for raw video: yuv, rgb, or gray.

123Chapter 17 Quick reference

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

PiCamera class
Here are some of the most commonly used methods and options of the PiCamera class.

start_preview(**options)

Displays the preview overlay. Options include fullscreen (True or False), window (x,y,w,h for
position and size), layer, and alpha.

stop_preview()

Hides the preview overlay.

capture(output, format=None, use_video_port=False, resize=None, splitter_

port=0, bayer=False, **options)

Captures an image from the camera and stores it in output. If the latter is a string, it’s treated
as the name of a file; if an object, it’s treated as a file-like object and the image data is
appended to it.

start_recording(output, format=None, resize=None, splitter_port=1, **options)

Starts recording video from the camera, storing it in output. If the latter is a string, it’s
treated as the name of a file; if an object, it’s treated as a file-like object and the video data is
appended to it.

wait_recording(timeout=0, splitter_port=1)

Pauses recording for the number of seconds specified in timeout. This method is
recommended over the standard time.sleep(), since it checks for errors during recording
and will immediately raise an exception.

stop_recording(splitter_port=1)

Stops recording video from the camera. The optional splitter_port parameter specifies
which port of the video splitter the encoder you wish to stop is attached to. Valid values are 0
to 3 (default 1).

03. Picamera Python library
Control the Camera Module from Python
programs using the picamera library

124 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

close()

Stops all recording and preview activities and releases all resources associated with the
camera; this is necessary to prevent GPU memory leaks. It should always be called once you
are finished with the camera (e.g. in the finally section of a try…finally block).

capture_continuous(output, format=None, use_video_port=False, resize=None,

splitter_port=0, burst=False, bayer=False, **options)

Captures images continuously from the camera as an infinite iterator. If output is a string,
each image is stored in a file named after it with the substitution of two values: (counter)
(a simple incrementer starting at 1) or (timestamp). For example, setting output to
'image(counter).jpg' would result in image1.jpg, image2.jpg, image3.jpg, etc.

capture_sequence(outputs, format='jpeg', use_video_port=False, resize=None,

splitter_port=0, burst=False, bayer=False, **options)

Captures a sequence of consecutive images from the camera, as fast as is possible.

record_sequence(outputs, format='h264', resize=None, splitter_port=1,

**options)

Records a sequence of video clips from the camera. The caller can control how long to record
to each item by only permitting the loop to continue when ready to switch to the next output.

split_recording(output, splitter_port=1, **options)

Continues the recording in the specified output. When called, the video encoder will wait for
the next appropriate split point (an inline SPS header), then will cease writing to the current
output (and close it, if it was specified as a file name), and continue writing to the newly
specified output.

add_overlay(source, size=None, **options)
Adds a static overlay to the preview output.

remove_overlay(overlay)

Removes a static overlay from the preview output. The overlay parameter specifies the
PiRenderer instance that was returned by add_overlay().

request_key_frame(splitter_port=1)

Requests the encoder, running on the specified splitter_port, to generate a key-frame (full-
image frame) as soon as possible.

analog_gain

Retrieves the current analogue gain of the camera.

125Chapter 17 Quick reference

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

annotate_text

Retrieves or sets a text annotation for all output.

awb_gains

Gets or sets the auto-white-balance gains of the camera, as a tuple (red, blue) – values are
between 0.0 and 8.0. This attribute only has an effect when awb_mode is set to 'off'.

awb_mode

Retrieves or sets the auto-white-balance mode of the camera. Possible values are:
'off', 'auto' (default), ‘sunlight', 'cloudy', 'shade', 'tungsten', 'fluorescent',
'incandescent', 'flash', or 'horizon'.

brightness

Retrieves or sets the brightness setting of the camera, as an integer between 0 and 100
(default 50).

color_effects

Retrieves or sets the current colour effect applied by the camera, as a (u, v) tuple – values
are between 0 and 255. When set to (128, 128), it results in a black and white image.

contrast

Retrieves or sets the contrast setting of the camera, as an integer between -100 and 100
(default 0).

digital_gain

Retrieves the current digital gain of the camera.

drc_strength

Retrieves or sets the dynamic range compression strength of the camera. Valid values are:
'off' (default), 'low', 'medium', or 'high'.

exposure_compensation

Retrieves or sets the exposure compensation level of the camera, as an integer between -25
and 25 (default 0). Each increment represents 1/6th of a stop.

exposure_mode

Retrieves or sets the exposure mode of the camera. Valid values are: 'off', 'auto' (default),
'night', 'nightpreview', 'backlight', 'spotlight', 'sports', 'snow', 'beach',
'verylong', 'fixedfps', 'antishake', or 'fireworks'.

126 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

exposure_speed

Retrieves the current shutter speed of the camera, in microseconds. The default is 0 (auto).

flash_mode

Retrieves or sets the flash mode of the camera. Valid values are: 'off' (default), 'auto',
'on', 'redeye', 'fillin', or 'torch'.
Note: You must define which GPIO pin the camera is to use for flash (and optional privacy
indicator). This is done within the device tree configuration, as detailed in Chapter 7.

frame

Retrieves information about the current frame recorded from the camera.

framerate

Retrieves or sets the frame rate at which video-port based image captures, video recordings,
and previews will run. It can be specified as an int, float, or fraction. The default is 30.
Note: The actual sensor frame rate and resolution used by the camera is influenced – but not
directly set – by this property.

hflip

Retrieves or sets whether the camera’s output is horizontally flipped. Default is False.

image_denoise

Retrieves or sets whether denoise will be applied to image captures. Default is True.

image_effect

Retrieves or sets the current image effect applied by the camera. Valid values are: 'none'
(default), 'negative', 'solarize', 'sketch', 'denoise', 'emboss', 'oilpaint',
'hatch', 'gpen', 'pastel', 'watercolor', 'film', 'blur', 'saturation', 'colorswap',
'washedout', 'posterise', 'colorpoint', 'colorbalance', 'cartoon', 'deinterlace1',
or 'deinterlace2'.

image_effect_params

Retrieves or sets the parameters for the current effect, as a tuple of numeric values up to six
elements long.

iso

Retrieves or sets the apparent ISO setting of the camera, which represents its sensitivity
to light. Lower values tend to produce less ‘noisy’ images, but operate poorly in low light
conditions. Valid values are: 0 (auto), 100, 200, 320, 400, 500, 640, or 800.

127Chapter 17 Quick reference

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

led

Sets the state of the camera’s LED (CM v1 only) via GPIO. If the RPi.GPIO library is available
and the Python process is run as root via sudo, this property can be used to set the state of
the camera’s LED as a Boolean value (True is on, False is off).
Note: This doesn’t work on the Raspberry Pi 3 or 4, due to a GPIO reconfiguration.

meter_mode

Retrieves or sets the metering mode of the camera. Valid values are: 'average' (default),
'spot', 'backlit', 'matrix'.

recording

Returns True if the start_recording() method has been called, and no stop_recording()
call has been made yet.

resolution

Retrieves or sets the resolution at which image captures, video recordings, and previews will
be captured. It can be specified as a (width, height) tuple, a string formatted ‘WIDTHxHEIGHT’,
or as a string containing a commonly recognized display resolution name (e.g. ‘VGA’, ‘HD’,
‘1080p’, etc). The camera must not be closed, and no recording must be active when the
property is set.

rotation

Retrieves or sets the current rotation of the camera’s image. Valid values are: 0 (default), 90,
180, and 270.

saturation

Retrieves or sets the saturation setting of the camera, as an integer between -100 and 100
(default 0).

sensor_mode

Retrieves or sets the input mode of the camera’s sensor. By default, mode 0 is used, which
allows the camera to automatically select an input mode based on the requested resolution
and frame rate. Valid values are currently between 0 and 7. See the Camera Hardware section
for more details on modes.

sharpness

Retrieves or sets the sharpness setting of the camera as an integer between -100 and 100
(default 0).

128 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

shutter_speed

Retrieves or sets the shutter speed of the camera in microseconds. Default is 0 (auto). Faster
shutter times require greater amounts of illumination and vice versa.
Note: In later firmwares, this attribute is limited by the value of the framerate attribute. For
example, if it’s set to 30fps, the shutter speed cannot be slower than 33,333 µs.

timestamp

Retrieves the system time according to the camera firmware.

vflip

Retrieves or sets whether the camera’s output is vertically flipped. The default value is False.

video_denoise

Retrieves or sets whether denoise will be applied to video recordings. The default value
is True.

video_stabilization

Retrieves or sets the video stabilisation mode of the camera. The default value is False.
Note: The built-in video stabilisation only accounts for vertical and horizontal motion,
not rotation.

zoom

Retrieves or sets the zoom applied to the camera’s input, as a tuple (x, y, w, h) of floating point
values ranging from 0.0 to 1.0, indicating the proportion of the image to include in the output
(the ‘region of interest’). The default value is (0.0, 0.0, 1.0, 1.0), which indicates that everything
should be included.

129Chapter 17 Quick reference

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

130 THE OFFICIAL RASPBERRY PI CAMERA GUIDE

131Chapter 17 Quick reference

THE OFFICIAL RASPBERRY PI CAMERA GUIDE

Take pictures and shoot video with your Raspberry Pi.
Connecting the official High Quality Camera or Camera
Module turns your favourite credit-card-sized computer
into a powerful digital camera. Learn how to set up and
control the camera to capture stills and video footage.
Discover the numerous modes and effects available,
and use the camera in a variety of exciting projects
across 17 packed chapters:

■ Precise camera control

■ Time-lapse photography

■ Selfies and stop-motion video

■ Build a wildlife camera

■ Make a video doorbell

■ Live-stream video and stills

■ Set up a security camera

	 & much more!

raspberrypi.org

http://raspberrypi.org

	001_COVER Camera Module Book_LA2 DIGITAL
	002-007_INTRO Camera Module Book_PK
	008-015_CHAPTER 1 Camera Module Book_PK1_SR_PK2_SR_PK3
	016-019_CHAPTER 2 Camera Module Book_PK1_SR_PK2_PK3_PK4
	020-023_CHAPTER 3 Camera Module Book_PK1_SR_PK2_PK3
	024-027_CHAPTER 4 Camera Module Book_PK1_PK2_SR_PK3
	028-033_CHAPTER 5 Camera Module Book_PK1_SR_PK2
	034-039_CHAPTER 6 Camera Module Book_PK2
	040-045_CHAPTER 7 Camera Module Book_PK2
	046-049_CHAPTER 8 Camera Module Book_PK2
	050-053_CHAPTER 9 Camera Module Book_PK2
	054-061_CHAPTER 10 Camera Module Book_PK2
	062-069_CHAPTER 11 Camera Module Book_PK2
	070-075_CHAPTER 12 Camera Module Book_PK2
	076-085_CHAPTER 13 Camera Module Book_PK2
	086-091_CHAPTER 14 Camera Module Book_PK2
	092-101_CHAPTER 15 Camera Module Book_PK1_SR_PK2
	102-107_CHAPTER 16 Camera Module Book_PK1_SR_PK2_SR
	108-131_CHAPTER 17 Camera Module Book_PK_PK2
	132_OBC

